Cargando…

Naturally Occurring Sclareol Diterpene Augments the Chemosensitivity of Human Hela Cervical Cancer Cells by Inducing Mitochondrial Mediated Programmed Cell Death, S-Phase Cell Cycle Arrest and Targeting Mitogen-Activated Protein Kinase (MAPK)/Extracellular-Signal-Regulated Kinase (ERK) Signaling Pathway

BACKGROUND: Cervical cancer is a major threat to female health worldwide. This study was performed to study the anticancer potential of sclareol and as a chemo-sensitizing agent against human cervical cancer cells along with evaluating its effects on apoptosis, cell cycle arrest, and MAPK/ERK signal...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Wang, Ping, Zhou, Xuemei, Gao, Minglian, Luo, Hongjuan, Meng, Yi, He, Zhongxiang, Zhu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Scientific Literature, Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6978991/
https://www.ncbi.nlm.nih.gov/pubmed/31935210
http://dx.doi.org/10.12659/MSM.920248
Descripción
Sumario:BACKGROUND: Cervical cancer is a major threat to female health worldwide. This study was performed to study the anticancer potential of sclareol and as a chemo-sensitizing agent against human cervical cancer cells along with evaluating its effects on apoptosis, cell cycle arrest, and MAPK/ERK signaling pathway. MATERIAL/METHODS: MTT assay was performed to check cell viability, morphological changes were observed through phase-contrast microscopy, DAPI (4′,6-diamidino-2-phenylindole) staining and TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labelling) assays were performed to evaluate apoptotic effects; MMP (matrix metalloproteinase) and cell cycle analysis were examined through flow cytometry. Western blotting analysis was performed to check the protein expressions of MAPK/ERK signaling pathway and apoptosis proteins. RESULTS: Results depicted that both sclareol and cisplatin induced cytotoxic effects individually but when used in combination, it led to much more pronounced cytotoxic effects indicating a synergistic effect of sclareol on cisplatin. Sclareol treatment led to significant decrease in the levels of p-MEK and p-ERK. Significant morphological changes (including chromatin condensation, nuclear fragmentation) in cervical cancer cells were seen after treatment. Western blot showed significant alterations including increase in BAX and decrease in BCL-2 levels. An increase in the S-phase cells, indicating cell cycle arrest at S-phase was seen along with modulating the expressions of CDK-1and Cdc25C, and increase in the levels of p-CDK-1, cyclin-B1, cyclin-A, and p-Cdc25C. CONCLUSIONS: Sclareol not only induced cytotoxic effects but also enhanced chemosensitivity of human cervical cancer cells towards cisplatin and these effects are mediated via MAPK/ERK signaling pathway, stimulation of apoptosis and S-phase cell cycle arrest.