Cargando…

Structural Bases for the Fitness Cost of the Antibiotic-Resistance and Lethal Mutations at Position 1408 of 16S rRNA

To understand a structural basis for the fitness cost of the A1408G antibiotic-resistance mutation in the ribosomal A-site RNA, we have determined crystal structures of its A1408C and A1408U lethal mutants, and made comparison with previously solved structures of the wild type and the antibiotic-res...

Descripción completa

Detalles Bibliográficos
Autores principales: Kondo, Jiro, Koganei, Mai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6983231/
https://www.ncbi.nlm.nih.gov/pubmed/31906077
http://dx.doi.org/10.3390/molecules25010159
Descripción
Sumario:To understand a structural basis for the fitness cost of the A1408G antibiotic-resistance mutation in the ribosomal A-site RNA, we have determined crystal structures of its A1408C and A1408U lethal mutants, and made comparison with previously solved structures of the wild type and the antibiotic-resistant mutant. The A-site RNA containing an asymmetric internal loop functions as a molecular switch to discriminate a single cognate tRNA from several near-cognate tRNAs by its conformational ON/OFF switching. Overall structures of the “off” states of the A1408C/U lethal mutants are very similar to those of the wild type and the A1408G antibiotic-resistant mutant. However, significant differences are found in local base stacking interactions including the functionally important A1492 and A1493 residues. In the wild type and the A1408G antibiotic-resistant mutant “off” states, both adenines are exposed to the solvent region. On the other hand, one of the corresponding adenines of the lethal A1408C/U mutants stay deeply inside their A-site helices by forming a purine-pyrimidine AoC or A-U base pair and is sandwiched between the upper and lower bases. Therefore, the ON/OFF switching might unfavorably occur in the lethal mutants compared to the wild type and the A1408G antibiotic-resistant mutant. It is probable that bacteria manage to acquire antibiotic resistance without losing the function of the A-site molecular switch by mutating the position 1408 only from A to G, but not to pyrimidine base C or U.