Cargando…
Quantitative microscopy reveals dynamics and fate of clustered IRE1α
The endoplasmic reticulum (ER) membrane-resident stress sensor inositol-requiring enzyme 1 (IRE1) governs the most evolutionarily conserved branch of the unfolded protein response. Upon sensing an accumulation of unfolded proteins in the ER lumen, IRE1 activates its cytoplasmic kinase and ribonuclea...
Autores principales: | Belyy, Vladislav, Tran, Ngoc-Han, Walter, Peter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6983381/ https://www.ncbi.nlm.nih.gov/pubmed/31871156 http://dx.doi.org/10.1073/pnas.1915311117 |
Ejemplares similares
-
Endoplasmic reticulum stress activates human IRE1α through reversible assembly of inactive dimers into small oligomers
por: Belyy, Vladislav, et al.
Publicado: (2022) -
Computationally enhanced quantitative phase microscopy reveals autonomous oscillations in mammalian cell growth
por: Liu, Xili, et al.
Publicado: (2020) -
Conserved structural elements specialize ATAD1 as a membrane protein extraction machine
por: Wang, Lan, et al.
Publicado: (2022) -
Atomic force microscopy reveals distinct protofilament-scale structural dynamics in depolymerizing microtubule arrays
por: Wijeratne, Sithara S., et al.
Publicado: (2022) -
Integrated spatial multiomics reveals fibroblast fate during tissue repair
por: Foster, Deshka S., et al.
Publicado: (2021)