Cargando…
Thymidine phosphorylase and prostrate cancer cell proliferation inhibitory activities of synthetic 4-hydroxybenzohydrazides: In vitro, kinetic, and in silico studies
Over-expression of thymidine phosphorylase (TP) plays a key role in many pathological complications, including angiogenesis which leads to cancer cells proliferation. Thus in search of new anticancer agents, a series of 4-hydroxybenzohydrazides (1–29) was synthesized, and evaluated for in vitro thym...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6984732/ https://www.ncbi.nlm.nih.gov/pubmed/31986186 http://dx.doi.org/10.1371/journal.pone.0227549 |
Sumario: | Over-expression of thymidine phosphorylase (TP) plays a key role in many pathological complications, including angiogenesis which leads to cancer cells proliferation. Thus in search of new anticancer agents, a series of 4-hydroxybenzohydrazides (1–29) was synthesized, and evaluated for in vitro thymidine phosphorylase inhibitory activity. Twenty compounds 1–3, 6–14, 16, 19, 22–24, and 27–29 showed potent to weak TP inhibitory activities with IC(50) values in the range of 6.8 to 229.5 μM, in comparison to the standards i.e. tipiracil (IC(50) = 0.014 ± 0.002 μM) and 7-deazaxanthine (IC(50) = 41.0 ± 1.63 μM). Kinetic studies on selected inhibitors 3, 9, 14, 22, 27, and 29 revealed uncompetitive and non-competitive modes of inhibition. Molecular docking studies of these inhibitors indicated that they were able to interact with the amino acid residues present in allosteric site of TP, including Asp391, Arg388, and Leu389. Antiproliferative (cytotoxic) activities of active compounds were also evaluated against mouse fibroblast (3T3) and prostate cancer (PC3) cell lines. Compounds 1, 2, 19, and 22–24 exhibited anti-proliferative activities against PC3 cells with IC(50) values between 6.5 to 10.5 μM, while they were largely non-cytotoxic to 3T3 (mouse fibroblast) cells proliferation. Present study thus identifies a new class of dual inhibitors of TP and cancer cell proliferation, which deserves to be further investigated for anti-cancer drug development. |
---|