Cargando…
Biased modulators of NMDA receptors control channel opening and ion selectivity
Allosteric modulators of ion channels typically alter the transitions rates between conformational states without changing the properties of the open pore. We describe here a novel class of positive allosteric modulators of N-methyl D-aspartate receptors (NMDARs) that mediate a calcium-permeable com...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6986806/ https://www.ncbi.nlm.nih.gov/pubmed/31959964 http://dx.doi.org/10.1038/s41589-019-0449-5 |
Sumario: | Allosteric modulators of ion channels typically alter the transitions rates between conformational states without changing the properties of the open pore. We describe here a novel class of positive allosteric modulators of N-methyl D-aspartate receptors (NMDARs) that mediate a calcium-permeable component of glutamatergic synaptic transmission and play essential roles in learning, memory, cognition, as well as neurological disease. EU1622-14 increases agonist potency and channel open probability, slows receptor deactivation, in addition to decreasing both single channel conductance and calcium permeability. The unique functional selectivity of this chemical probe reveals a mechanism for enhancing NMDAR function while limiting excess calcium influx, and shows that allosteric modulators can act as biased modulators of ion channel permeation. |
---|