Cargando…
A deep learning image-based intrinsic molecular subtype classifier of breast tumors reveals tumor heterogeneity that may affect survival
BACKGROUND: Breast cancer intrinsic molecular subtype (IMS) as classified by the expression-based PAM50 assay is considered a strong prognostic feature, even when controlled for by standard clinicopathological features such as age, grade, and nodal status, yet the molecular testing required to eluci...
Autores principales: | Jaber, Mustafa I., Song, Bing, Taylor, Clive, Vaske, Charles J., Benz, Stephen C., Rabizadeh, Shahrooz, Soon-Shiong, Patrick, Szeto, Christopher W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6988279/ https://www.ncbi.nlm.nih.gov/pubmed/31992350 http://dx.doi.org/10.1186/s13058-020-1248-3 |
Ejemplares similares
-
Deep Learning Implicitly Handles Tissue Specific Phenomena to Predict Tumor DNA Accessibility and Immune Activity
por: Wnuk, Kamil, et al.
Publicado: (2019) -
Learning subgroup-specific regulatory interactions and regulator independence with PARADIGM
por: Sedgewick, Andrew J., et al.
Publicado: (2013) -
Comprehensive genomic transcriptomic tumor-normal gene panel analysis for enhanced precision in patients with lung cancer
por: Rabizadeh, Shahrooz, et al.
Publicado: (2018) -
Identification of an immune gene expression signature associated with favorable clinical features in Treg-enriched patient tumor samples
por: Givechian, Kevin B., et al.
Publicado: (2018) -
An immunogenic NSCLC microenvironment is associated with favorable survival in lung adenocarcinoma
por: Givechian, Kevin B., et al.
Publicado: (2019)