Cargando…

Developmental changes in the reward positivity: An electrophysiological trajectory of reward processing

Children and adolescents learn to regulate their behavior by utilizing feedback from the environment but exactly how this ability develops remains unclear. To investigate this question, we recorded the event-related brain potential (ERP) from children (8–13 years), adolescents (14–17 years) and youn...

Descripción completa

Detalles Bibliográficos
Autores principales: Lukie, Carmen N., Montazer-Hojat, Somayyeh, Holroyd, Clay B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6989764/
https://www.ncbi.nlm.nih.gov/pubmed/24879113
http://dx.doi.org/10.1016/j.dcn.2014.04.003
Descripción
Sumario:Children and adolescents learn to regulate their behavior by utilizing feedback from the environment but exactly how this ability develops remains unclear. To investigate this question, we recorded the event-related brain potential (ERP) from children (8–13 years), adolescents (14–17 years) and young adults (18–23 years) while they navigated a “virtual maze” in pursuit of monetary rewards. The amplitude of the reward positivity, an ERP component elicited by feedback stimuli, was evaluated for each age group. A current theory suggests the reward positivity is produced by the impact of reinforcement learning signals carried by the midbrain dopamine system on anterior cingulate cortex, which utilizes the signals to learn and execute extended behaviors. We found that the three groups produced a reward positivity of comparable size despite relatively longer ERP component latencies for the children, suggesting that the reward processing system reaches maturity early in development. We propose that early development of the midbrain dopamine system facilitates the development of extended goal-directed behaviors in anterior cingulate cortex.