Cargando…
Optimized artificial neural network to improve the accuracy of estimated fault impedances and distances for underground distribution system
This paper proposes an approach to accurately estimate the impedance value of a high impedance fault (HIF) and the distance from its fault location for a distribution system. Based on the three-phase voltage and current waveforms which are monitored through a single measurement in the network, sever...
Autores principales: | Naidu, Kanendra, Ali, Mohd Syukri, Abu Bakar, Ab Halim, Tan, Chia Kwang, Arof, Hamzah, Mokhlis, Hazlie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6991958/ https://www.ncbi.nlm.nih.gov/pubmed/31999711 http://dx.doi.org/10.1371/journal.pone.0227494 |
Ejemplares similares
-
Transformer Incipient Fault Prediction Using Combined Artificial Neural Network and Various Particle Swarm Optimisation Techniques
por: Illias, Hazlee Azil, et al.
Publicado: (2015) -
Classification of abnormal location in medium voltage switchgears using hybrid gravitational search algorithm-artificial intelligence
por: Illias, Hazlee Azil, et al.
Publicado: (2021) -
Optimal Placement of Unified Power Flow Controllers to Improve Dynamic Voltage Stability Using Power System Variable Based Voltage Stability Indices
por: Albatsh, Fadi M., et al.
Publicado: (2015) -
Monitoring and Fault Location Sensor Network for Underground Distribution Lines
por: Parejo, Antonio, et al.
Publicado: (2019) -
Development of a fault-rupture environment in 3D: A numerical tool for examining the mechanical impact of a fault on underground excavations
por: Kim, Bo-Hyun, et al.
Publicado: (2019)