Cargando…
R-Roscovitine Improves Motoneuron Function in Mouse Models for Spinal Muscular Atrophy
Neurotransmission defects and motoneuron degeneration are hallmarks of spinal muscular atrophy, a monogenetic disease caused by the deficiency of the SMN protein. In the present study, we show that systemic application of R-Roscovitine, a Ca(v)2.1/Ca(v)2.2 channel modifier and a cyclin-dependent kin...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6992996/ https://www.ncbi.nlm.nih.gov/pubmed/31981925 http://dx.doi.org/10.1016/j.isci.2020.100826 |
Sumario: | Neurotransmission defects and motoneuron degeneration are hallmarks of spinal muscular atrophy, a monogenetic disease caused by the deficiency of the SMN protein. In the present study, we show that systemic application of R-Roscovitine, a Ca(v)2.1/Ca(v)2.2 channel modifier and a cyclin-dependent kinase 5 (Cdk-5) inhibitor, significantly improved survival of SMA mice. In addition, R-Roscovitine increased Ca(v)2.1 channel density and sizes of the motor endplates. In vitro, R-Roscovitine restored axon lengths and growth cone sizes of Smn-deficient motoneurons corresponding to enhanced spontaneous Ca(2+) influx and elevated Ca(v)2.2 channel cluster formations independent of its capability to inhibit Cdk-5. Acute application of R-Roscovitine at the neuromuscular junction significantly increased evoked neurotransmitter release, increased the frequency of spontaneous miniature potentials, and lowered the activation threshold of silent terminals. These data indicate that R-Roscovitine improves Ca(2+) signaling and Ca(2+) homeostasis in Smn-deficient motoneurons, which is generally crucial for motoneuron differentiation, maturation, and function. |
---|