Cargando…

R-Roscovitine Improves Motoneuron Function in Mouse Models for Spinal Muscular Atrophy

Neurotransmission defects and motoneuron degeneration are hallmarks of spinal muscular atrophy, a monogenetic disease caused by the deficiency of the SMN protein. In the present study, we show that systemic application of R-Roscovitine, a Ca(v)2.1/Ca(v)2.2 channel modifier and a cyclin-dependent kin...

Descripción completa

Detalles Bibliográficos
Autores principales: Tejero, Rocio, Balk, Stefanie, Franco-Espin, Julio, Ojeda, Jorge, Hennlein, Luisa, Drexl, Hans, Dombert, Benjamin, Clausen, Jan-Dierk, Torres-Benito, Laura, Saal-Bauernschubert, Lena, Blum, Robert, Briese, Michael, Appenzeller, Silke, Tabares, Lucia, Jablonka, Sibylle
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6992996/
https://www.ncbi.nlm.nih.gov/pubmed/31981925
http://dx.doi.org/10.1016/j.isci.2020.100826
Descripción
Sumario:Neurotransmission defects and motoneuron degeneration are hallmarks of spinal muscular atrophy, a monogenetic disease caused by the deficiency of the SMN protein. In the present study, we show that systemic application of R-Roscovitine, a Ca(v)2.1/Ca(v)2.2 channel modifier and a cyclin-dependent kinase 5 (Cdk-5) inhibitor, significantly improved survival of SMA mice. In addition, R-Roscovitine increased Ca(v)2.1 channel density and sizes of the motor endplates. In vitro, R-Roscovitine restored axon lengths and growth cone sizes of Smn-deficient motoneurons corresponding to enhanced spontaneous Ca(2+) influx and elevated Ca(v)2.2 channel cluster formations independent of its capability to inhibit Cdk-5. Acute application of R-Roscovitine at the neuromuscular junction significantly increased evoked neurotransmitter release, increased the frequency of spontaneous miniature potentials, and lowered the activation threshold of silent terminals. These data indicate that R-Roscovitine improves Ca(2+) signaling and Ca(2+) homeostasis in Smn-deficient motoneurons, which is generally crucial for motoneuron differentiation, maturation, and function.