Cargando…
Cdc7 activates replication checkpoint by phosphorylating the Chk1-binding domain of Claspin in human cells
Replication checkpoint is essential for maintaining genome integrity in response to various replication stresses as well as during the normal growth. The evolutionally conserved ATR-Claspin-Chk1 pathway is induced during replication checkpoint activation. Cdc7 kinase, required for initiation of DNA...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6996922/ https://www.ncbi.nlm.nih.gov/pubmed/31889509 http://dx.doi.org/10.7554/eLife.50796 |
_version_ | 1783493593792512000 |
---|---|
author | Yang, Chi-Chun Kato, Hiroyuki Shindo, Mayumi Masai, Hisao |
author_facet | Yang, Chi-Chun Kato, Hiroyuki Shindo, Mayumi Masai, Hisao |
author_sort | Yang, Chi-Chun |
collection | PubMed |
description | Replication checkpoint is essential for maintaining genome integrity in response to various replication stresses as well as during the normal growth. The evolutionally conserved ATR-Claspin-Chk1 pathway is induced during replication checkpoint activation. Cdc7 kinase, required for initiation of DNA replication at replication origins, has been implicated in checkpoint activation but how it is involved in this pathway has not been known. Here, we show that Cdc7 is required for Claspin-Chk1 interaction in human cancer cells by phosphorylating CKBD (Chk1-binding-domain) of Claspin. The residual Chk1 activation in Cdc7-depleted cells is lost upon further depletion of casein kinase1 (CK1γ1), previously reported to phosphorylate CKBD. Thus, Cdc7, in conjunction with CK1γ1, facilitates the interaction between Claspin and Chk1 through phosphorylating CKBD. We also show that, whereas Cdc7 is predominantly responsible for CKBD phosphorylation in cancer cells, CK1γ1 plays a major role in non-cancer cells, providing rationale for targeting Cdc7 for cancer cell-specific cell killing. |
format | Online Article Text |
id | pubmed-6996922 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | eLife Sciences Publications, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-69969222020-02-06 Cdc7 activates replication checkpoint by phosphorylating the Chk1-binding domain of Claspin in human cells Yang, Chi-Chun Kato, Hiroyuki Shindo, Mayumi Masai, Hisao eLife Chromosomes and Gene Expression Replication checkpoint is essential for maintaining genome integrity in response to various replication stresses as well as during the normal growth. The evolutionally conserved ATR-Claspin-Chk1 pathway is induced during replication checkpoint activation. Cdc7 kinase, required for initiation of DNA replication at replication origins, has been implicated in checkpoint activation but how it is involved in this pathway has not been known. Here, we show that Cdc7 is required for Claspin-Chk1 interaction in human cancer cells by phosphorylating CKBD (Chk1-binding-domain) of Claspin. The residual Chk1 activation in Cdc7-depleted cells is lost upon further depletion of casein kinase1 (CK1γ1), previously reported to phosphorylate CKBD. Thus, Cdc7, in conjunction with CK1γ1, facilitates the interaction between Claspin and Chk1 through phosphorylating CKBD. We also show that, whereas Cdc7 is predominantly responsible for CKBD phosphorylation in cancer cells, CK1γ1 plays a major role in non-cancer cells, providing rationale for targeting Cdc7 for cancer cell-specific cell killing. eLife Sciences Publications, Ltd 2019-12-31 /pmc/articles/PMC6996922/ /pubmed/31889509 http://dx.doi.org/10.7554/eLife.50796 Text en © 2019, Yang et al http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Chromosomes and Gene Expression Yang, Chi-Chun Kato, Hiroyuki Shindo, Mayumi Masai, Hisao Cdc7 activates replication checkpoint by phosphorylating the Chk1-binding domain of Claspin in human cells |
title | Cdc7 activates replication checkpoint by phosphorylating the Chk1-binding domain of Claspin in human cells |
title_full | Cdc7 activates replication checkpoint by phosphorylating the Chk1-binding domain of Claspin in human cells |
title_fullStr | Cdc7 activates replication checkpoint by phosphorylating the Chk1-binding domain of Claspin in human cells |
title_full_unstemmed | Cdc7 activates replication checkpoint by phosphorylating the Chk1-binding domain of Claspin in human cells |
title_short | Cdc7 activates replication checkpoint by phosphorylating the Chk1-binding domain of Claspin in human cells |
title_sort | cdc7 activates replication checkpoint by phosphorylating the chk1-binding domain of claspin in human cells |
topic | Chromosomes and Gene Expression |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6996922/ https://www.ncbi.nlm.nih.gov/pubmed/31889509 http://dx.doi.org/10.7554/eLife.50796 |
work_keys_str_mv | AT yangchichun cdc7activatesreplicationcheckpointbyphosphorylatingthechk1bindingdomainofclaspininhumancells AT katohiroyuki cdc7activatesreplicationcheckpointbyphosphorylatingthechk1bindingdomainofclaspininhumancells AT shindomayumi cdc7activatesreplicationcheckpointbyphosphorylatingthechk1bindingdomainofclaspininhumancells AT masaihisao cdc7activatesreplicationcheckpointbyphosphorylatingthechk1bindingdomainofclaspininhumancells |