Cargando…

Live Birth in Sex-Reversed XY Mice Lacking the Nuclear Receptor Dax1

The nuclear hormone receptor Dax1 functions during development as a testes-determining gene. However, the phenotype of male mice lacking Dax1 is strain-dependent due to the background-specific abundance of male-determining Sry gene-transcripts. We hypothesised that inter-individual variation in Sry...

Descripción completa

Detalles Bibliográficos
Autores principales: Fernandes-Freitas, Isabel, Milona, Alexandra, Murphy, Kevin G., Dhillo, Waljit S., Owen, Bryn M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6997165/
https://www.ncbi.nlm.nih.gov/pubmed/32015477
http://dx.doi.org/10.1038/s41598-020-58788-9
Descripción
Sumario:The nuclear hormone receptor Dax1 functions during development as a testes-determining gene. However, the phenotype of male mice lacking Dax1 is strain-dependent due to the background-specific abundance of male-determining Sry gene-transcripts. We hypothesised that inter-individual variation in Sry mRNA-abundance would result in a spectrum of phenotypes even within-strain. We found that while all XY C57BL/6J mice lacking Dax1 presented as phenotypic females, there was a marked inter-individual variability in measures of fertility. Indeed, we report rare occasions where sex-reversed mice had measures of fertility comparable to those in control females. On two occasions, these sex-reversed XY mice were able to give birth to live offspring following mating to stud-males. As such, this work documents within-strain variability in phenotypes of XY mice lacking Dax1, and reports for the first time a complete sex-reversal capable of achieving live birth in these mice.