Cargando…

A one‐pot process for synthesis of mitomycin analogs catalyzed by laccase/lipase optimized by response surface methodology

To reach the excellent yield as well as environmental friendliness, an efficient one‐pot process for the synthesis of 2‐methyl‐3‐n‐butylaminoyl‐1,4‐benzoquinone, a mitomycin‐like compound by the domino reaction of 2‐methyl‐1,4‐hydroquinone and butylamine using laccase/lipase as co‐catalysts, has bee...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Yuanyuan, Yao, Quancai, Li, Zewen, Yang, Fengke, Wang, Fanye, Liu, Junhong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6999360/
https://www.ncbi.nlm.nih.gov/pubmed/32624973
http://dx.doi.org/10.1002/elsc.201900118
Descripción
Sumario:To reach the excellent yield as well as environmental friendliness, an efficient one‐pot process for the synthesis of 2‐methyl‐3‐n‐butylaminoyl‐1,4‐benzoquinone, a mitomycin‐like compound by the domino reaction of 2‐methyl‐1,4‐hydroquinone and butylamine using laccase/lipase as co‐catalysts, has been developed. In this present study, the process proposed here was further improved by optimizing the relevant factors using the response surface methodology based on Box–Benkhen Design. The optimum condition that afforded the highest yield (98%) of 2‐methyl‐3‐n‐butylaminoyl‐1,4‐benzoquinone was obtained as follows: molar ratio of amines to hydroquinones 1.16:1, activity ratio of laccase to lipase 1.14:2, and reaction temperature 38.9°C. The results obtained indicate that this process may be useful as a green alternative method for higher yield production of mitomycin analogs.