Cargando…
Learning to suppress a distractor is not affected by working memory load
Where and what we attend to is not only determined by our current goals but also by what we have encountered in the past. Recent studies have shown that people learn to extract statistical regularities in the environment resulting in attentional suppression of high-probability distractor locations,...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7000502/ https://www.ncbi.nlm.nih.gov/pubmed/31797259 http://dx.doi.org/10.3758/s13423-019-01679-6 |
_version_ | 1783494055321141248 |
---|---|
author | Gao, Ya Theeuwes, Jan |
author_facet | Gao, Ya Theeuwes, Jan |
author_sort | Gao, Ya |
collection | PubMed |
description | Where and what we attend to is not only determined by our current goals but also by what we have encountered in the past. Recent studies have shown that people learn to extract statistical regularities in the environment resulting in attentional suppression of high-probability distractor locations, effectively reducing capture by a distractor. Here, we asked whether this statistical learning is dependent on working memory resources. The additional singleton task in which one location was more likely to contain a distractor was combined with a concurrent visual working memory task (Experiment 1) and a spatial working memory task (Experiment 2). The result showed that learning to suppress this high-probability location was not at all affected by working memory load. We conclude that learning to suppress a location is an implicit and automatic process that does not rely on visual or spatial working memory capacity, nor on executive control resources. We speculate that extracting regularities from the environment likely relies on long-term memory processes. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.3758/s13423-019-01679-6) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-7000502 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Springer US |
record_format | MEDLINE/PubMed |
spelling | pubmed-70005022020-02-21 Learning to suppress a distractor is not affected by working memory load Gao, Ya Theeuwes, Jan Psychon Bull Rev Brief Report Where and what we attend to is not only determined by our current goals but also by what we have encountered in the past. Recent studies have shown that people learn to extract statistical regularities in the environment resulting in attentional suppression of high-probability distractor locations, effectively reducing capture by a distractor. Here, we asked whether this statistical learning is dependent on working memory resources. The additional singleton task in which one location was more likely to contain a distractor was combined with a concurrent visual working memory task (Experiment 1) and a spatial working memory task (Experiment 2). The result showed that learning to suppress this high-probability location was not at all affected by working memory load. We conclude that learning to suppress a location is an implicit and automatic process that does not rely on visual or spatial working memory capacity, nor on executive control resources. We speculate that extracting regularities from the environment likely relies on long-term memory processes. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.3758/s13423-019-01679-6) contains supplementary material, which is available to authorized users. Springer US 2019-12-03 2020 /pmc/articles/PMC7000502/ /pubmed/31797259 http://dx.doi.org/10.3758/s13423-019-01679-6 Text en © The Author(s) 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Brief Report Gao, Ya Theeuwes, Jan Learning to suppress a distractor is not affected by working memory load |
title | Learning to suppress a distractor is not affected by working memory load |
title_full | Learning to suppress a distractor is not affected by working memory load |
title_fullStr | Learning to suppress a distractor is not affected by working memory load |
title_full_unstemmed | Learning to suppress a distractor is not affected by working memory load |
title_short | Learning to suppress a distractor is not affected by working memory load |
title_sort | learning to suppress a distractor is not affected by working memory load |
topic | Brief Report |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7000502/ https://www.ncbi.nlm.nih.gov/pubmed/31797259 http://dx.doi.org/10.3758/s13423-019-01679-6 |
work_keys_str_mv | AT gaoya learningtosuppressadistractorisnotaffectedbyworkingmemoryload AT theeuwesjan learningtosuppressadistractorisnotaffectedbyworkingmemoryload |