Cargando…
RefDNN: a reference drug based neural network for more accurate prediction of anticancer drug resistance
Cancer is one of the most difficult diseases to treat owing to the drug resistance of tumour cells. Recent studies have revealed that drug responses are closely associated with genomic alterations in cancer cells. Numerous state-of-the-art machine learning models have been developed for prediction o...
Autores principales: | Choi, Jonghwan, Park, Sanghyun, Ahn, Jaegyoon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7002431/ https://www.ncbi.nlm.nih.gov/pubmed/32024872 http://dx.doi.org/10.1038/s41598-020-58821-x |
Ejemplares similares
-
Novel deep learning model for more accurate prediction of drug-drug interaction effects
por: Lee, Geonhee, et al.
Publicado: (2019) -
Binding affinity prediction for protein–ligand complex using deep attention mechanism based on intermolecular interactions
por: Seo, Sangmin, et al.
Publicado: (2021) -
DAISM-DNN(XMBD): Highly accurate cell type proportion estimation with in silico data augmentation and deep neural networks
por: Lin, Yating, et al.
Publicado: (2022) -
GVES: machine learning model for identification of prognostic genes with a small dataset
por: Ko, Soohyun, et al.
Publicado: (2021) -
RefRGim: an intelligent reference panel reconstruction method for genotype imputation with convolutional neural networks
por: Shi, Shuo, et al.
Publicado: (2021)