Cargando…

Systematic functional identification of cancer multi-drug resistance genes

BACKGROUND: Drug resistance is a major obstacle in cancer therapy. To elucidate the genetic factors that regulate sensitivity to anti-cancer drugs, we performed CRISPR-Cas9 knockout screens for resistance to a spectrum of drugs. RESULTS: In addition to known drug targets and resistance mechanisms, t...

Descripción completa

Detalles Bibliográficos
Autores principales: Lau, Man-Tat, Ghazanfar, Shila, Parkin, Ashleigh, Chou, Angela, Rouaen, Jourdin R., Littleboy, Jamie B., Nessem, Danielle, Khuong, Thang M., Nevoltris, Damien, Schofield, Peter, Langley, David, Christ, Daniel, Yang, Jean, Pajic, Marina, Neely, G. Gregory
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7006212/
https://www.ncbi.nlm.nih.gov/pubmed/32028983
http://dx.doi.org/10.1186/s13059-020-1940-8
_version_ 1783495097717882880
author Lau, Man-Tat
Ghazanfar, Shila
Parkin, Ashleigh
Chou, Angela
Rouaen, Jourdin R.
Littleboy, Jamie B.
Nessem, Danielle
Khuong, Thang M.
Nevoltris, Damien
Schofield, Peter
Langley, David
Christ, Daniel
Yang, Jean
Pajic, Marina
Neely, G. Gregory
author_facet Lau, Man-Tat
Ghazanfar, Shila
Parkin, Ashleigh
Chou, Angela
Rouaen, Jourdin R.
Littleboy, Jamie B.
Nessem, Danielle
Khuong, Thang M.
Nevoltris, Damien
Schofield, Peter
Langley, David
Christ, Daniel
Yang, Jean
Pajic, Marina
Neely, G. Gregory
author_sort Lau, Man-Tat
collection PubMed
description BACKGROUND: Drug resistance is a major obstacle in cancer therapy. To elucidate the genetic factors that regulate sensitivity to anti-cancer drugs, we performed CRISPR-Cas9 knockout screens for resistance to a spectrum of drugs. RESULTS: In addition to known drug targets and resistance mechanisms, this study revealed novel insights into drug mechanisms of action, including cellular transporters, drug target effectors, and genes involved in target-relevant pathways. Importantly, we identified ten multi-drug resistance genes, including an uncharacterized gene C1orf115, which we named Required for Drug-induced Death 1 (RDD1). Loss of RDD1 resulted in resistance to five anti-cancer drugs. Finally, targeting RDD1 leads to chemotherapy resistance in mice and low RDD1 expression is associated with poor prognosis in multiple cancers. CONCLUSIONS: Together, we provide a functional landscape of resistance mechanisms to a broad range of chemotherapeutic drugs and highlight RDD1 as a new factor controlling multi-drug resistance. This information can guide personalized therapies or instruct rational drug combinations to minimize acquisition of resistance.
format Online
Article
Text
id pubmed-7006212
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-70062122020-02-11 Systematic functional identification of cancer multi-drug resistance genes Lau, Man-Tat Ghazanfar, Shila Parkin, Ashleigh Chou, Angela Rouaen, Jourdin R. Littleboy, Jamie B. Nessem, Danielle Khuong, Thang M. Nevoltris, Damien Schofield, Peter Langley, David Christ, Daniel Yang, Jean Pajic, Marina Neely, G. Gregory Genome Biol Research BACKGROUND: Drug resistance is a major obstacle in cancer therapy. To elucidate the genetic factors that regulate sensitivity to anti-cancer drugs, we performed CRISPR-Cas9 knockout screens for resistance to a spectrum of drugs. RESULTS: In addition to known drug targets and resistance mechanisms, this study revealed novel insights into drug mechanisms of action, including cellular transporters, drug target effectors, and genes involved in target-relevant pathways. Importantly, we identified ten multi-drug resistance genes, including an uncharacterized gene C1orf115, which we named Required for Drug-induced Death 1 (RDD1). Loss of RDD1 resulted in resistance to five anti-cancer drugs. Finally, targeting RDD1 leads to chemotherapy resistance in mice and low RDD1 expression is associated with poor prognosis in multiple cancers. CONCLUSIONS: Together, we provide a functional landscape of resistance mechanisms to a broad range of chemotherapeutic drugs and highlight RDD1 as a new factor controlling multi-drug resistance. This information can guide personalized therapies or instruct rational drug combinations to minimize acquisition of resistance. BioMed Central 2020-02-07 /pmc/articles/PMC7006212/ /pubmed/32028983 http://dx.doi.org/10.1186/s13059-020-1940-8 Text en © The Author(s). 2020 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research
Lau, Man-Tat
Ghazanfar, Shila
Parkin, Ashleigh
Chou, Angela
Rouaen, Jourdin R.
Littleboy, Jamie B.
Nessem, Danielle
Khuong, Thang M.
Nevoltris, Damien
Schofield, Peter
Langley, David
Christ, Daniel
Yang, Jean
Pajic, Marina
Neely, G. Gregory
Systematic functional identification of cancer multi-drug resistance genes
title Systematic functional identification of cancer multi-drug resistance genes
title_full Systematic functional identification of cancer multi-drug resistance genes
title_fullStr Systematic functional identification of cancer multi-drug resistance genes
title_full_unstemmed Systematic functional identification of cancer multi-drug resistance genes
title_short Systematic functional identification of cancer multi-drug resistance genes
title_sort systematic functional identification of cancer multi-drug resistance genes
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7006212/
https://www.ncbi.nlm.nih.gov/pubmed/32028983
http://dx.doi.org/10.1186/s13059-020-1940-8
work_keys_str_mv AT laumantat systematicfunctionalidentificationofcancermultidrugresistancegenes
AT ghazanfarshila systematicfunctionalidentificationofcancermultidrugresistancegenes
AT parkinashleigh systematicfunctionalidentificationofcancermultidrugresistancegenes
AT chouangela systematicfunctionalidentificationofcancermultidrugresistancegenes
AT rouaenjourdinr systematicfunctionalidentificationofcancermultidrugresistancegenes
AT littleboyjamieb systematicfunctionalidentificationofcancermultidrugresistancegenes
AT nessemdanielle systematicfunctionalidentificationofcancermultidrugresistancegenes
AT khuongthangm systematicfunctionalidentificationofcancermultidrugresistancegenes
AT nevoltrisdamien systematicfunctionalidentificationofcancermultidrugresistancegenes
AT schofieldpeter systematicfunctionalidentificationofcancermultidrugresistancegenes
AT langleydavid systematicfunctionalidentificationofcancermultidrugresistancegenes
AT christdaniel systematicfunctionalidentificationofcancermultidrugresistancegenes
AT yangjean systematicfunctionalidentificationofcancermultidrugresistancegenes
AT pajicmarina systematicfunctionalidentificationofcancermultidrugresistancegenes
AT neelyggregory systematicfunctionalidentificationofcancermultidrugresistancegenes