Cargando…

Novel Dioxygenases, HIF-α Specific Prolyl-hydroxylase and Asparanginyl-hydroxylase: O(2) Switch for Cell Survival

Studies on hypoxia-signaling pathways have revealed novel Fe(II) and α-ketoglutarate-dependent dioxygenases that hydroxylate prolyl or asparaginyl residues of a transactivator, Hypoxia-Inducible Factor-α (HIF-α) protein. The recognition of these unprecedented dioxygenases has led to open a new parad...

Descripción completa

Detalles Bibliográficos
Autor principal: Park, Hyunsung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Singapore 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7006278/
https://www.ncbi.nlm.nih.gov/pubmed/32038783
http://dx.doi.org/10.5487/TR.2008.24.2.101
Descripción
Sumario:Studies on hypoxia-signaling pathways have revealed novel Fe(II) and α-ketoglutarate-dependent dioxygenases that hydroxylate prolyl or asparaginyl residues of a transactivator, Hypoxia-Inducible Factor-α (HIF-α) protein. The recognition of these unprecedented dioxygenases has led to open a new paradigm that the hydroxylation mediates an instant post-translational modification of a protein in response to the changes in cellular concentrations of oxygen, reducing agents, or α-ketoglutarate. Activity of HIF-α is repressed by two hydroxylases. One is HIF-α specific prolyl-hydroxylases, referred as prolyl-hydroxylase domain (PHD). The other is HIF-α specific asparaginyl-hydroxylase, referred as factor-inhibiting HIF-1 (FIH-1). The facts (i) that many dioxygenases commonly use molecular oxygen and reducing agents during detoxification of xenobiotics, (ii) that detoxification reaction produces radicals and reactive oxygen species, and (iii) that activities of both PHD and FIH-1 are regulated by the changes in the balance between oxygen species and reducing agents, imply the possibility that the activity of HIF-α can be increased during detoxification process. The importance of HIF-α in cancer and ischemic diseases has been emphasized since its target genes mediate various hypoxic responses including angiogenesis, erythropoiesis, glycolysis, pH balance, metastasis, invasion and cell survival. Therefore, activators of PHDs and FIH-1 can be potential anticancer drugs which could reduce the activity of HIF, whereas inhibitors, for preventing ischemic diseases. This review highlights these novel dioxygenases, PHDs and FIH-1 as specific target against not only cancers but also ischemic diseases.