Cargando…
Prediction of Radiation Pneumonitis With Dose Distribution: A Convolutional Neural Network (CNN) Based Model
Radiation pneumonitis (RP) is one of the major side effects of thoracic radiotherapy. The aim of this study is to build a dose distribution based prediction model, and investigate the correlation of RP incidence and high-order features of dose distribution. A convolution 3D (C3D) neural network was...
Autores principales: | Liang, Bin, Tian, Yuan, Chen, Xinyuan, Yan, Hui, Yan, Lingling, Zhang, Tao, Zhou, Zongmei, Wang, Lvhua, Dai, Jianrong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7006502/ https://www.ncbi.nlm.nih.gov/pubmed/32076596 http://dx.doi.org/10.3389/fonc.2019.01500 |
Ejemplares similares
-
Dosiomics: Extracting 3D Spatial Features From Dose Distribution to Predict Incidence of Radiation Pneumonitis
por: Liang, Bin, et al.
Publicado: (2019) -
CNN-Based Quality Assurance for Automatic Segmentation of Breast Cancer in Radiotherapy
por: Chen, Xinyuan, et al.
Publicado: (2020) -
Significance of low-dose radiation distribution in development of radiation pneumonitis after helical-tomotherapy-based hypofractionated radiotherapy for pulmonary metastases
por: Jo, In-Young, et al.
Publicado: (2014) -
Deep convolutional neural networks for multiple histologic types of ovarian tumors classification in ultrasound images
por: Wu, Meijing, et al.
Publicado: (2023) -
Combining distance and anatomical information for deep-learning based dose distribution predictions for nasopharyngeal cancer radiotherapy planning
por: Chen, Xinyuan, et al.
Publicado: (2023)