Cargando…
Applications of off-gas mass spectrometry in fed-batch mammalian cell culture
Off-gas analysis using a magnetic sector mass spectrometer was performed in mammalian cell cultures in the fed-batch mode at the 5 L bench and 50 L pilot scales. Factors affecting the MS gas traces were identified during the duration of the fed-batch cultures. Correlation between viable cell concent...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7007916/ https://www.ncbi.nlm.nih.gov/pubmed/31709471 http://dx.doi.org/10.1007/s00449-019-02242-2 |
Sumario: | Off-gas analysis using a magnetic sector mass spectrometer was performed in mammalian cell cultures in the fed-batch mode at the 5 L bench and 50 L pilot scales. Factors affecting the MS gas traces were identified during the duration of the fed-batch cultures. Correlation between viable cell concentration (VCC) and oxygen concentration of the inlet gas into the bioreactor (O(2)-in) resulted in R(2) ≈ 0.9; O(2)-in could be used as a proxy for VCC. Oxygen mass transfer (kLa) was also quantified throughout the culture period with antifoam addition at different time points which is shown to lower the kLa. Real-time specific oxygen consumption rate (qO(2)) of 2–20 pmol/cell/day throughout the bioreactor runs were within the range of values reported in literature for mammalian cell cultures. We also report, to our knowledge, the first instance of a distinct correlation between respiration quotient (RQ) and the metabolic state of the cell culture with regard to lactate production phase (average RQ > 1) and consumption phase (average RQ < 1). |
---|