Cargando…
A broad-spectrum antiviral molecule, QL47, selectively inhibits eukaryotic translation
Small-molecule inhibitors of translation are critical tools to study the molecular mechanisms of protein synthesis. In this study, we sought to characterize how QL47, a host-targeted, small-molecule antiviral agent, inhibits steady-state viral protein expression. We demonstrate that this small molec...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Biochemistry and Molecular Biology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7008383/ https://www.ncbi.nlm.nih.gov/pubmed/31914414 http://dx.doi.org/10.1074/jbc.RA119.011132 |
Sumario: | Small-molecule inhibitors of translation are critical tools to study the molecular mechanisms of protein synthesis. In this study, we sought to characterize how QL47, a host-targeted, small-molecule antiviral agent, inhibits steady-state viral protein expression. We demonstrate that this small molecule broadly inhibits both viral and host protein synthesis and targets a translation step specific to eukaryotic cells. We show that QL47 inhibits protein neosynthesis initiated by both canonical cap-driven and noncanonical initiation strategies, most likely by targeting an early step in translation elongation. Our findings thus establish QL47 as a new small-molecule inhibitor that can be utilized to probe the eukaryotic translation machinery and that can be further developed as a new therapeutic agent. |
---|