Cargando…
Deep learning improves the ability of sgRNA off-target propensity prediction
BACKGROUND: CRISPR/Cas9 system, as the third-generation genome editing technology, has been widely applied in target gene repair and gene expression regulation. Selection of appropriate sgRNA can improve the on-target knockout efficacy of CRISPR/Cas9 system with high sensitivity and specificity. How...
Autores principales: | Liu, Qiaoyue, Cheng, Xiang, Liu, Gan, Li, Bohao, Liu, Xiuqin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7011380/ https://www.ncbi.nlm.nih.gov/pubmed/32041517 http://dx.doi.org/10.1186/s12859-020-3395-z |
Ejemplares similares
-
CNN-XG: A Hybrid Framework for sgRNA On-Target Prediction
por: Li, Bohao, et al.
Publicado: (2022) -
Prediction of sgRNA on-target activity in bacteria by deep learning
por: Wang, Lei, et al.
Publicado: (2019) -
Optimization of CRISPR/Cas9 genome editing in cotton by improved sgRNA expression
por: Long, Lu, et al.
Publicado: (2018) -
CRISPRpred(SEQ): a sequence-based method for sgRNA on target activity prediction using traditional machine learning
por: Muhammad Rafid, Ali Haisam, et al.
Publicado: (2020) -
Genome-scale CRISPR screening at high sensitivity with an empirically designed sgRNA library
por: Henkel, Luisa, et al.
Publicado: (2020)