Cargando…
Evolutionary Algorithm-Based Complete Coverage Path Planning for Tetriamond Tiling Robots
Tiling robots with fixed morphology face major challenges in terms of covering the cleaning area and generating the optimal trajectory during navigation. Developing a self-reconfigurable autonomous robot is a probable solution to these issues, as it adapts various forms and accesses narrow spaces du...
Autores principales: | Le, Anh Vu, Nhan, Nguyen Huu Khanh, Mohan, Rajesh Elara |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7013451/ https://www.ncbi.nlm.nih.gov/pubmed/31941127 http://dx.doi.org/10.3390/s20020445 |
Ejemplares similares
-
Coverage Path Planning Using Reinforcement Learning-Based TSP for hTetran—A Polyabolo-Inspired Self-Reconfigurable Tiling Robot
por: Le, Anh Vu, et al.
Publicado: (2021) -
Optimization Complete Area Coverage by Reconfigurable hTrihex Tiling Robot
por: Le, Anh Vu, et al.
Publicado: (2020) -
Modified A-Star Algorithm for Efficient Coverage Path Planning in Tetris Inspired Self-Reconfigurable Robot with Integrated Laser Sensor
por: Le, Anh Vu, et al.
Publicado: (2018) -
Reinforcement Learning-Based Complete Area Coverage Path Planning for a Modified hTrihex Robot
por: Apuroop, Koppaka Ganesh Sai, et al.
Publicado: (2021) -
Constrained VPH+: a local path planning algorithm for a bio-inspired crawling robot with customized ultrasonic scanning sensor
por: Rao, Akshay, et al.
Publicado: (2016)