Cargando…
Identification and Characterization of a New Platinum-Induced TP53 Mutation in MDAH Ovarian Cancer Cells
Platinum-based chemotherapy is the therapy of choice for epithelial ovarian cancer (EOC). Acquired resistance to platinum (PT) is a frequent event that leads to disease progression and predicts poor prognosis. To understand possible mechanisms underlying acquired PT-resistance, we have recently gene...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7016977/ https://www.ncbi.nlm.nih.gov/pubmed/31877751 http://dx.doi.org/10.3390/cells9010036 |
_version_ | 1783497099711610880 |
---|---|
author | Lorenzon, Ilaria Pellarin, Ilenia Pellizzari, Ilenia D’Andrea, Sara Belletti, Barbara Sonego, Maura Baldassarre, Gustavo Schiappacassi, Monica |
author_facet | Lorenzon, Ilaria Pellarin, Ilenia Pellizzari, Ilenia D’Andrea, Sara Belletti, Barbara Sonego, Maura Baldassarre, Gustavo Schiappacassi, Monica |
author_sort | Lorenzon, Ilaria |
collection | PubMed |
description | Platinum-based chemotherapy is the therapy of choice for epithelial ovarian cancer (EOC). Acquired resistance to platinum (PT) is a frequent event that leads to disease progression and predicts poor prognosis. To understand possible mechanisms underlying acquired PT-resistance, we have recently generated and characterized three PT-resistant isogenic EOC cell lines. Here, we more deeply characterize several PT-resistant clones derived from MDAH-2774 cells. We show that, in these cells, the increased PT resistance was accompanied by the presence of a subpopulation of multinucleated giant cells. This phenotype was likely due to an altered progression through the M phase of the cell cycle and accompanied by the deregulated expression of genes involved in M phase progression known to be target of mutant TP53. Interestingly, we found that PT-resistant MDAH cells acquired in the TP53 gene a novel secondary mutation (i.e., S185G) that accompanied the R273H typical of MDAH cells. The double p53(S185G/R273H) mutant increases the resistance to PT in a TP53 null EOC cellular model. Overall, we show how the selective pressure of PT is able to induce additional mutation in an already mutant TP53 gene in EOC and how this event could contribute to the acquisition of novel cellular phenotypes. |
format | Online Article Text |
id | pubmed-7016977 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-70169772020-02-28 Identification and Characterization of a New Platinum-Induced TP53 Mutation in MDAH Ovarian Cancer Cells Lorenzon, Ilaria Pellarin, Ilenia Pellizzari, Ilenia D’Andrea, Sara Belletti, Barbara Sonego, Maura Baldassarre, Gustavo Schiappacassi, Monica Cells Article Platinum-based chemotherapy is the therapy of choice for epithelial ovarian cancer (EOC). Acquired resistance to platinum (PT) is a frequent event that leads to disease progression and predicts poor prognosis. To understand possible mechanisms underlying acquired PT-resistance, we have recently generated and characterized three PT-resistant isogenic EOC cell lines. Here, we more deeply characterize several PT-resistant clones derived from MDAH-2774 cells. We show that, in these cells, the increased PT resistance was accompanied by the presence of a subpopulation of multinucleated giant cells. This phenotype was likely due to an altered progression through the M phase of the cell cycle and accompanied by the deregulated expression of genes involved in M phase progression known to be target of mutant TP53. Interestingly, we found that PT-resistant MDAH cells acquired in the TP53 gene a novel secondary mutation (i.e., S185G) that accompanied the R273H typical of MDAH cells. The double p53(S185G/R273H) mutant increases the resistance to PT in a TP53 null EOC cellular model. Overall, we show how the selective pressure of PT is able to induce additional mutation in an already mutant TP53 gene in EOC and how this event could contribute to the acquisition of novel cellular phenotypes. MDPI 2019-12-21 /pmc/articles/PMC7016977/ /pubmed/31877751 http://dx.doi.org/10.3390/cells9010036 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Lorenzon, Ilaria Pellarin, Ilenia Pellizzari, Ilenia D’Andrea, Sara Belletti, Barbara Sonego, Maura Baldassarre, Gustavo Schiappacassi, Monica Identification and Characterization of a New Platinum-Induced TP53 Mutation in MDAH Ovarian Cancer Cells |
title | Identification and Characterization of a New Platinum-Induced TP53 Mutation in MDAH Ovarian Cancer Cells |
title_full | Identification and Characterization of a New Platinum-Induced TP53 Mutation in MDAH Ovarian Cancer Cells |
title_fullStr | Identification and Characterization of a New Platinum-Induced TP53 Mutation in MDAH Ovarian Cancer Cells |
title_full_unstemmed | Identification and Characterization of a New Platinum-Induced TP53 Mutation in MDAH Ovarian Cancer Cells |
title_short | Identification and Characterization of a New Platinum-Induced TP53 Mutation in MDAH Ovarian Cancer Cells |
title_sort | identification and characterization of a new platinum-induced tp53 mutation in mdah ovarian cancer cells |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7016977/ https://www.ncbi.nlm.nih.gov/pubmed/31877751 http://dx.doi.org/10.3390/cells9010036 |
work_keys_str_mv | AT lorenzonilaria identificationandcharacterizationofanewplatinuminducedtp53mutationinmdahovariancancercells AT pellarinilenia identificationandcharacterizationofanewplatinuminducedtp53mutationinmdahovariancancercells AT pellizzariilenia identificationandcharacterizationofanewplatinuminducedtp53mutationinmdahovariancancercells AT dandreasara identificationandcharacterizationofanewplatinuminducedtp53mutationinmdahovariancancercells AT bellettibarbara identificationandcharacterizationofanewplatinuminducedtp53mutationinmdahovariancancercells AT sonegomaura identificationandcharacterizationofanewplatinuminducedtp53mutationinmdahovariancancercells AT baldassarregustavo identificationandcharacterizationofanewplatinuminducedtp53mutationinmdahovariancancercells AT schiappacassimonica identificationandcharacterizationofanewplatinuminducedtp53mutationinmdahovariancancercells |