Cargando…

Electrochemical C–H bond activation via cationic iridium hydride pincer complexes

A C–H bond activation strategy based on electrochemical activation of a metal hydride is introduced. Electrochemical oxidation of ((tBu(4))PCP)IrH(4) ((tBu(4))PCP is [1,3-((t)Bu(2)PCH(2))-C(6)H(3)](–)) in the presence of pyridine derivatives generates cationic Ir hydride complexes of the type [((tBu...

Descripción completa

Detalles Bibliográficos
Autores principales: Lindley, Brian M., Walden, Andrew G., Brasacchio, Ann Marie, Casuras, Andrea, Lease, Nicholas, Chen, Chun-Hsing, Goldman, Alan S., Miller, Alexander J. M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Royal Society of Chemistry 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7017868/
https://www.ncbi.nlm.nih.gov/pubmed/32110295
http://dx.doi.org/10.1039/c9sc03076j
Descripción
Sumario:A C–H bond activation strategy based on electrochemical activation of a metal hydride is introduced. Electrochemical oxidation of ((tBu(4))PCP)IrH(4) ((tBu(4))PCP is [1,3-((t)Bu(2)PCH(2))-C(6)H(3)](–)) in the presence of pyridine derivatives generates cationic Ir hydride complexes of the type [((tBu(4))PCP)IrH(L)](+) (where L = pyridine, 2,6-lutidine, or 2-phenylpyridine). Facile deprotonation of [((tBu(4))PCP)IrH(2,6-lutidine)](+) with the phosphazene base tert-butylimino-tris(pyrrolidino)phosphorane, (t)BuP(1)(pyrr), results in selective C–H activation of 1,2-difluorobenzene (1,2-DFB) solvent to generate ((tBu(4))PCP)Ir(H)(2,3-C(6)F(2)H(3)). The overall electrochemical C–H activation reaction proceeds at room temperature without need for chemical activation by a sacrificial alkene hydrogen acceptor. This rare example of undirected electrochemical C–H activation holds promise for the development of future catalytic processes.