Cargando…
Predictability of drug-induced liver injury by machine learning
BACKGROUND: Drug-induced liver injury (DILI) is a major concern in drug development, as hepatotoxicity may not be apparent at early stages but can lead to life threatening consequences. The ability to predict DILI from in vitro data would be a crucial advantage. In 2018, the Critical Assessment Mass...
Autores principales: | Chierici, Marco, Francescatto, Margherita, Bussola, Nicole, Jurman, Giuseppe, Furlanello, Cesare |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7020573/ https://www.ncbi.nlm.nih.gov/pubmed/32054490 http://dx.doi.org/10.1186/s13062-020-0259-4 |
Ejemplares similares
-
Evaluating reproducibility of AI algorithms in digital pathology with DAPPER
por: Bizzego, Andrea, et al.
Publicado: (2019) -
Integrative Network Fusion: A Multi-Omics Approach in Molecular Profiling
por: Chierici, Marco, et al.
Publicado: (2020) -
Multi-omics integration for neuroblastoma clinical endpoint prediction
por: Francescatto, Margherita, et al.
Publicado: (2018) -
A machine learning pipeline for quantitative phenotype prediction from genotype data
por: Guzzetta, Giorgio, et al.
Publicado: (2010) -
Distillation of the clinical algorithm improves prognosis by multi-task deep learning in high-risk Neuroblastoma
por: Maggio, Valerio, et al.
Publicado: (2018)