Cargando…

Meat Quality and Fatty Acid Profiles of Chinese Ningxiang Pigs Following Supplementation with N-Carbamylglutamate

SIMPLE SUMMARY: N-carbamylglutamate (NCG) has been demonstrated to promote the synthesis of endogenous arginine and improve reproductive performance. In the present study, we found that dietary NCG supplementation improved meat quality of a Chinese fat-type pig by increasing muscle tenderness and Ph...

Descripción completa

Detalles Bibliográficos
Autores principales: Xing, Yueteng, Wu, Xin, Xie, Chunyan, Xiao, Dingfu, Zhang, Bin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7023016/
https://www.ncbi.nlm.nih.gov/pubmed/31935807
http://dx.doi.org/10.3390/ani10010088
Descripción
Sumario:SIMPLE SUMMARY: N-carbamylglutamate (NCG) has been demonstrated to promote the synthesis of endogenous arginine and improve reproductive performance. In the present study, we found that dietary NCG supplementation improved meat quality of a Chinese fat-type pig by increasing muscle tenderness and Phe concentration, and optimizing fatty acid profiles in different tissues. These results provided scientific evidence for the application of NCG as a feed additive in finishing pigs. ABSTRACT: The present study evaluated the effects of dietary N-carbamylglutamate (NCG) on carcass traits, meat quality, and fatty acid profiles in the longissimus dorsi muscle and adipose tissues of Chinese Ningxiang pigs. A total of 36 castrated female pigs with a similar initial weight (43.21 ± 0.57 kg) were randomly assigned to two treatments (with six pens per treatment and three pigs per pen) and fed either a basal diet or a basal diet supplemented with 0.08% NCG for 56 days. Results showed that dietary NCG reduced shear force (p = 0.004) and increased drip loss (p = 0.044) in longissimus dorsi muscle of Ningxiang pigs. Moreover, increased levels of oleic acid (C18:1n9c) (p = 0.009), paullinic acid (C20:1) (p = 0.004), and α-linolenic acid (C18:3n3) (p < 0.001), while significant reduction in the proportions of arachidonic acid (C20:4n6) (p < 0.001) and polyunsaturated fatty acid (PUFA) (p = 0.017) were observed in the longissimus dorsi muscle of pigs fed NCG when compared with those fed the control diet. As for adipose tissues, the C20:1 (p = 0.045) proportion in dorsal subcutaneous adipose (DSA), as well as the stearic acid (C18:0) (p = 0.018) level in perirenal adipose (PA) were decreased when pigs were fed the NCG diet compared with those of the control diet. In contrast, the margaric acid (C17:0) (p = 0.043) proportion in PA were increased. Moreover, the NCG diet produced PA with a greater proportion of total PUFAs (p = 0.001) (particularly linoleic acid (C18:2n6c) (p = 0.001)) compared with those produced by the control diet. These findings suggest that dietary NCG has beneficial effects by decreasing the shear force and improving the healthfulness of fatty acid profiles, providing a novel strategy for enhancing meat quality of pigs.