Cargando…
Spatial Distribution of (R)-salbutamol in Rat Brain Following Nasal and Intravenous Administration Using DESI-MS
Recent studies have shown that β2-Adrenoreceptor is a regulator of the a-synuclein gene driving risk of Parkinson’s disease. The β2-AR agonist (R)-salbutamol, eutomer of rac-salbutamol, may hold therapeutic potential for Parkinson’s disease (PD) following nasal administration. In this study, we use...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7023290/ https://www.ncbi.nlm.nih.gov/pubmed/31906459 http://dx.doi.org/10.3390/pharmaceutics12010035 |
Sumario: | Recent studies have shown that β2-Adrenoreceptor is a regulator of the a-synuclein gene driving risk of Parkinson’s disease. The β2-AR agonist (R)-salbutamol, eutomer of rac-salbutamol, may hold therapeutic potential for Parkinson’s disease (PD) following nasal administration. In this study, we use desorption electrospray ionization mass spectrometry (DESI-MS) to analyze spatial distribution of (R)-salbutamol in rat brain following nasal and intravenous administration. Here, we report that (R)-salbutamol efficiently deliver to the brain and had more drug dosage exposure in rat’s brain through nasal route administration than that of intravenous route administration. In conclusion, administering (R)-salbutamol through nasal route of administration may hold advantages in improving spatial distribution and increased exposure of drug in brain. |
---|