Cargando…

Spatial Distribution of (R)-salbutamol in Rat Brain Following Nasal and Intravenous Administration Using DESI-MS

Recent studies have shown that β2-Adrenoreceptor is a regulator of the a-synuclein gene driving risk of Parkinson’s disease. The β2-AR agonist (R)-salbutamol, eutomer of rac-salbutamol, may hold therapeutic potential for Parkinson’s disease (PD) following nasal administration. In this study, we use...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Rui, Wu, Jie, Liu, Siyu, Deng, LiangJun, Hu, Junhua, Chen, Xi, Tan, Wen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7023290/
https://www.ncbi.nlm.nih.gov/pubmed/31906459
http://dx.doi.org/10.3390/pharmaceutics12010035
Descripción
Sumario:Recent studies have shown that β2-Adrenoreceptor is a regulator of the a-synuclein gene driving risk of Parkinson’s disease. The β2-AR agonist (R)-salbutamol, eutomer of rac-salbutamol, may hold therapeutic potential for Parkinson’s disease (PD) following nasal administration. In this study, we use desorption electrospray ionization mass spectrometry (DESI-MS) to analyze spatial distribution of (R)-salbutamol in rat brain following nasal and intravenous administration. Here, we report that (R)-salbutamol efficiently deliver to the brain and had more drug dosage exposure in rat’s brain through nasal route administration than that of intravenous route administration. In conclusion, administering (R)-salbutamol through nasal route of administration may hold advantages in improving spatial distribution and increased exposure of drug in brain.