Cargando…
Phytogenic Generation of NiO Nanoparticles Using Stevia Leaf Extract and Evaluation of Their In-Vitro Antioxidant and Antimicrobial Properties
In the present study, economically viable NiO nanoparticles were produced by biogenic preparation using stevia leaf broth and their in-vitro antioxidant and antimicrobial activities were evaluated. The properties of the prepared NiO nanoparticles were confirmed by analytical techniques such as Ultra...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7023445/ https://www.ncbi.nlm.nih.gov/pubmed/31935798 http://dx.doi.org/10.3390/biom10010089 |
_version_ | 1783498251660427264 |
---|---|
author | Srihasam, Saiganesh Thyagarajan, Krishnan Korivi, Mallikarjuna Lebaka, Veeranjaneya Reddy Mallem, Siva Pratap Reddy |
author_facet | Srihasam, Saiganesh Thyagarajan, Krishnan Korivi, Mallikarjuna Lebaka, Veeranjaneya Reddy Mallem, Siva Pratap Reddy |
author_sort | Srihasam, Saiganesh |
collection | PubMed |
description | In the present study, economically viable NiO nanoparticles were produced by biogenic preparation using stevia leaf broth and their in-vitro antioxidant and antimicrobial activities were evaluated. The properties of the prepared NiO nanoparticles were confirmed by analytical techniques such as Ultraviolet-Visible (UV-Vis), X-ray diffraction (XRD), FE-SEM, and Fourier transform infrared spectroscopy (FTIR) analyses. Morphological studies using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed that the size of synthesized nanoparticles ranged from 20 to 50 nm, most of which were spherical and few of which were agglomerated. The role of the biological moieties, which reduce and cap the nanoparticles, was studied using FTIR analysis. The prepared nanoparticles strongly inhibited gram-negative bacteria, which is a camper with gram-positive bacteria and fungi. Furthermore, it performs an effective in-vitro activity through α,α-diphenyl-β-picrylhydrazyl (DPPH) reduction. Thus, it can be concluded that the effective and easy green synthesis process used for NiO nanoparticles provides potential antimicrobial agents against multidrug-resistant microbes. |
format | Online Article Text |
id | pubmed-7023445 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-70234452020-03-12 Phytogenic Generation of NiO Nanoparticles Using Stevia Leaf Extract and Evaluation of Their In-Vitro Antioxidant and Antimicrobial Properties Srihasam, Saiganesh Thyagarajan, Krishnan Korivi, Mallikarjuna Lebaka, Veeranjaneya Reddy Mallem, Siva Pratap Reddy Biomolecules Article In the present study, economically viable NiO nanoparticles were produced by biogenic preparation using stevia leaf broth and their in-vitro antioxidant and antimicrobial activities were evaluated. The properties of the prepared NiO nanoparticles were confirmed by analytical techniques such as Ultraviolet-Visible (UV-Vis), X-ray diffraction (XRD), FE-SEM, and Fourier transform infrared spectroscopy (FTIR) analyses. Morphological studies using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed that the size of synthesized nanoparticles ranged from 20 to 50 nm, most of which were spherical and few of which were agglomerated. The role of the biological moieties, which reduce and cap the nanoparticles, was studied using FTIR analysis. The prepared nanoparticles strongly inhibited gram-negative bacteria, which is a camper with gram-positive bacteria and fungi. Furthermore, it performs an effective in-vitro activity through α,α-diphenyl-β-picrylhydrazyl (DPPH) reduction. Thus, it can be concluded that the effective and easy green synthesis process used for NiO nanoparticles provides potential antimicrobial agents against multidrug-resistant microbes. MDPI 2020-01-06 /pmc/articles/PMC7023445/ /pubmed/31935798 http://dx.doi.org/10.3390/biom10010089 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Srihasam, Saiganesh Thyagarajan, Krishnan Korivi, Mallikarjuna Lebaka, Veeranjaneya Reddy Mallem, Siva Pratap Reddy Phytogenic Generation of NiO Nanoparticles Using Stevia Leaf Extract and Evaluation of Their In-Vitro Antioxidant and Antimicrobial Properties |
title | Phytogenic Generation of NiO Nanoparticles Using Stevia Leaf Extract and Evaluation of Their In-Vitro Antioxidant and Antimicrobial Properties |
title_full | Phytogenic Generation of NiO Nanoparticles Using Stevia Leaf Extract and Evaluation of Their In-Vitro Antioxidant and Antimicrobial Properties |
title_fullStr | Phytogenic Generation of NiO Nanoparticles Using Stevia Leaf Extract and Evaluation of Their In-Vitro Antioxidant and Antimicrobial Properties |
title_full_unstemmed | Phytogenic Generation of NiO Nanoparticles Using Stevia Leaf Extract and Evaluation of Their In-Vitro Antioxidant and Antimicrobial Properties |
title_short | Phytogenic Generation of NiO Nanoparticles Using Stevia Leaf Extract and Evaluation of Their In-Vitro Antioxidant and Antimicrobial Properties |
title_sort | phytogenic generation of nio nanoparticles using stevia leaf extract and evaluation of their in-vitro antioxidant and antimicrobial properties |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7023445/ https://www.ncbi.nlm.nih.gov/pubmed/31935798 http://dx.doi.org/10.3390/biom10010089 |
work_keys_str_mv | AT srihasamsaiganesh phytogenicgenerationofnionanoparticlesusingstevialeafextractandevaluationoftheirinvitroantioxidantandantimicrobialproperties AT thyagarajankrishnan phytogenicgenerationofnionanoparticlesusingstevialeafextractandevaluationoftheirinvitroantioxidantandantimicrobialproperties AT korivimallikarjuna phytogenicgenerationofnionanoparticlesusingstevialeafextractandevaluationoftheirinvitroantioxidantandantimicrobialproperties AT lebakaveeranjaneyareddy phytogenicgenerationofnionanoparticlesusingstevialeafextractandevaluationoftheirinvitroantioxidantandantimicrobialproperties AT mallemsivapratapreddy phytogenicgenerationofnionanoparticlesusingstevialeafextractandevaluationoftheirinvitroantioxidantandantimicrobialproperties |