Cargando…
A small molecule chaperone rescues the stability and activity of a cancer‐associated variant of NAD(P)H:quinone oxidoreductase 1 in vitro
NAD(P)H:quinone oxidoreductase 1 (NQO1) is a human FAD‐dependent enzyme that plays a crucial role in the antioxidant defense system. A naturally occurring single‐nucleotide polymorphism (NQO1*2) in the NQO1 gene leads to an amino acid substitution (P187S), which severely compromises the activity and...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7027498/ https://www.ncbi.nlm.nih.gov/pubmed/31605637 http://dx.doi.org/10.1002/1873-3468.13636 |
Sumario: | NAD(P)H:quinone oxidoreductase 1 (NQO1) is a human FAD‐dependent enzyme that plays a crucial role in the antioxidant defense system. A naturally occurring single‐nucleotide polymorphism (NQO1*2) in the NQO1 gene leads to an amino acid substitution (P187S), which severely compromises the activity and stability of the enzyme. The NQO1*2 genotype has been linked to a higher risk for several types of cancer and poor survival rate after anthracycline‐based chemotherapy. In this study, we show that a small molecular chaperone (N‐(2‐bromophenyl)pyrrolidine‐1‐sulfonamide) repopulates the native wild‐type conformation. As a consequence of the stabilizing effect, the enzymatic activity of the P187S variant protein is strongly improved in the presence of the molecular chaperone in vitro. |
---|