Cargando…

Pulsatile MAPK Signaling Modulates p53 Activity to Control Cell Fate Decisions at the G2 Checkpoint for DNA Damage

Cell-autonomous changes in p53 expression govern the duration and outcome of cell-cycle arrest at the G2 checkpoint for DNA damage. Here, we report that mitogen-activated protein kinase (MAPK) signaling integrates extracellular cues with p53 dynamics to determine cell fate at the G2 checkpoint. Opto...

Descripción completa

Detalles Bibliográficos
Autores principales: De, Siddharth, Campbell, Callum, Venkitaraman, Ashok R., Esposito, Alessandro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cell Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7029415/
https://www.ncbi.nlm.nih.gov/pubmed/32075732
http://dx.doi.org/10.1016/j.celrep.2020.01.074
_version_ 1783499163422425088
author De, Siddharth
Campbell, Callum
Venkitaraman, Ashok R.
Esposito, Alessandro
author_facet De, Siddharth
Campbell, Callum
Venkitaraman, Ashok R.
Esposito, Alessandro
author_sort De, Siddharth
collection PubMed
description Cell-autonomous changes in p53 expression govern the duration and outcome of cell-cycle arrest at the G2 checkpoint for DNA damage. Here, we report that mitogen-activated protein kinase (MAPK) signaling integrates extracellular cues with p53 dynamics to determine cell fate at the G2 checkpoint. Optogenetic tools and quantitative cell biochemistry reveal transient oscillations in MAPK activity dependent on ataxia-telangiectasia-mutated kinase after DNA damage. MAPK inhibition alters p53 dynamics and p53-dependent gene expression after checkpoint enforcement, prolonging G2 arrest. In contrast, sustained MAPK signaling induces the phosphorylation of CDC25C, and consequently, the accumulation of pro-mitotic kinases, thereby relaxing checkpoint stringency and permitting cells to evade prolonged G2 arrest and senescence induction. We propose a model in which this MAPK-mediated mechanism integrates extracellular cues with cell-autonomous p53-mediated signals, to safeguard genomic integrity during tissue proliferation. Early steps in oncogene-driven carcinogenesis may imbalance this tumor-suppressive mechanism to trigger genome instability.
format Online
Article
Text
id pubmed-7029415
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Cell Press
record_format MEDLINE/PubMed
spelling pubmed-70294152020-02-25 Pulsatile MAPK Signaling Modulates p53 Activity to Control Cell Fate Decisions at the G2 Checkpoint for DNA Damage De, Siddharth Campbell, Callum Venkitaraman, Ashok R. Esposito, Alessandro Cell Rep Article Cell-autonomous changes in p53 expression govern the duration and outcome of cell-cycle arrest at the G2 checkpoint for DNA damage. Here, we report that mitogen-activated protein kinase (MAPK) signaling integrates extracellular cues with p53 dynamics to determine cell fate at the G2 checkpoint. Optogenetic tools and quantitative cell biochemistry reveal transient oscillations in MAPK activity dependent on ataxia-telangiectasia-mutated kinase after DNA damage. MAPK inhibition alters p53 dynamics and p53-dependent gene expression after checkpoint enforcement, prolonging G2 arrest. In contrast, sustained MAPK signaling induces the phosphorylation of CDC25C, and consequently, the accumulation of pro-mitotic kinases, thereby relaxing checkpoint stringency and permitting cells to evade prolonged G2 arrest and senescence induction. We propose a model in which this MAPK-mediated mechanism integrates extracellular cues with cell-autonomous p53-mediated signals, to safeguard genomic integrity during tissue proliferation. Early steps in oncogene-driven carcinogenesis may imbalance this tumor-suppressive mechanism to trigger genome instability. Cell Press 2020-02-18 /pmc/articles/PMC7029415/ /pubmed/32075732 http://dx.doi.org/10.1016/j.celrep.2020.01.074 Text en © 2020 The Author(s) http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
De, Siddharth
Campbell, Callum
Venkitaraman, Ashok R.
Esposito, Alessandro
Pulsatile MAPK Signaling Modulates p53 Activity to Control Cell Fate Decisions at the G2 Checkpoint for DNA Damage
title Pulsatile MAPK Signaling Modulates p53 Activity to Control Cell Fate Decisions at the G2 Checkpoint for DNA Damage
title_full Pulsatile MAPK Signaling Modulates p53 Activity to Control Cell Fate Decisions at the G2 Checkpoint for DNA Damage
title_fullStr Pulsatile MAPK Signaling Modulates p53 Activity to Control Cell Fate Decisions at the G2 Checkpoint for DNA Damage
title_full_unstemmed Pulsatile MAPK Signaling Modulates p53 Activity to Control Cell Fate Decisions at the G2 Checkpoint for DNA Damage
title_short Pulsatile MAPK Signaling Modulates p53 Activity to Control Cell Fate Decisions at the G2 Checkpoint for DNA Damage
title_sort pulsatile mapk signaling modulates p53 activity to control cell fate decisions at the g2 checkpoint for dna damage
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7029415/
https://www.ncbi.nlm.nih.gov/pubmed/32075732
http://dx.doi.org/10.1016/j.celrep.2020.01.074
work_keys_str_mv AT desiddharth pulsatilemapksignalingmodulatesp53activitytocontrolcellfatedecisionsattheg2checkpointfordnadamage
AT campbellcallum pulsatilemapksignalingmodulatesp53activitytocontrolcellfatedecisionsattheg2checkpointfordnadamage
AT venkitaramanashokr pulsatilemapksignalingmodulatesp53activitytocontrolcellfatedecisionsattheg2checkpointfordnadamage
AT espositoalessandro pulsatilemapksignalingmodulatesp53activitytocontrolcellfatedecisionsattheg2checkpointfordnadamage