Cargando…
Tracking intratumoral heterogeneity in glioblastoma via regularized classification of single-cell RNA-Seq data
BACKGROUND: Understanding cellular and molecular heterogeneity in glioblastoma (GBM), the most common and aggressive primary brain malignancy, is a crucial step towards the development of effective therapies. Besides the inter-patient variability, the presence of multiple cell populations within tum...
Autores principales: | Lopes, Marta B., Vinga, Susana |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7029554/ https://www.ncbi.nlm.nih.gov/pubmed/32070274 http://dx.doi.org/10.1186/s12859-020-3390-4 |
Ejemplares similares
-
Measuring intratumor heterogeneity by network entropy using RNA-seq data
por: Park, Youngjune, et al.
Publicado: (2016) -
TCox: Correlation-Based Regularization Applied to Colorectal Cancer Survival Data
por: Peixoto, Carolina, et al.
Publicado: (2020) -
Unifying models of glioblastoma’s intratumoral heterogeneity
por: Lam, K H Brian, et al.
Publicado: (2020) -
Twiner: correlation-based regularization for identifying common cancer gene signatures
por: Lopes, Marta B., et al.
Publicado: (2019) -
Intratumor DNA methylation heterogeneity in glioblastoma: implications for DNA methylation-based classification
por: Wenger, Anna, et al.
Publicado: (2019)