Cargando…

A molecular switch regulating transcriptional repression and activation of PPARγ

Nuclear receptor (NR) transcription factors use a conserved activation function-2 (AF-2) helix 12 mechanism for agonist-induced coactivator interaction and NR transcriptional activation. In contrast, ligand-induced corepressor-dependent NR repression appears to occur through structurally diverse mec...

Descripción completa

Detalles Bibliográficos
Autores principales: Shang, Jinsai, Mosure, Sarah A., Zheng, Jie, Brust, Richard, Bass, Jared, Nichols, Ashley, Solt, Laura A., Griffin, Patrick R., Kojetin, Douglas J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7031403/
https://www.ncbi.nlm.nih.gov/pubmed/32075969
http://dx.doi.org/10.1038/s41467-020-14750-x
_version_ 1783499371144282112
author Shang, Jinsai
Mosure, Sarah A.
Zheng, Jie
Brust, Richard
Bass, Jared
Nichols, Ashley
Solt, Laura A.
Griffin, Patrick R.
Kojetin, Douglas J.
author_facet Shang, Jinsai
Mosure, Sarah A.
Zheng, Jie
Brust, Richard
Bass, Jared
Nichols, Ashley
Solt, Laura A.
Griffin, Patrick R.
Kojetin, Douglas J.
author_sort Shang, Jinsai
collection PubMed
description Nuclear receptor (NR) transcription factors use a conserved activation function-2 (AF-2) helix 12 mechanism for agonist-induced coactivator interaction and NR transcriptional activation. In contrast, ligand-induced corepressor-dependent NR repression appears to occur through structurally diverse mechanisms. We report two crystal structures of peroxisome proliferator-activated receptor gamma (PPARγ) in an inverse agonist/corepressor-bound transcriptionally repressive conformation. Helix 12 is displaced from the solvent-exposed active conformation and occupies the orthosteric ligand-binding pocket enabled by a conformational change that doubles the pocket volume. Paramagnetic relaxation enhancement (PRE) NMR and chemical crosslinking mass spectrometry confirm the repressive helix 12 conformation. PRE NMR also defines the mechanism of action of the corepressor-selective inverse agonist T0070907, and reveals that apo-helix 12 exchanges between transcriptionally active and repressive conformations—supporting a fundamental hypothesis in the NR field that helix 12 exchanges between transcriptionally active and repressive conformations.
format Online
Article
Text
id pubmed-7031403
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-70314032020-03-04 A molecular switch regulating transcriptional repression and activation of PPARγ Shang, Jinsai Mosure, Sarah A. Zheng, Jie Brust, Richard Bass, Jared Nichols, Ashley Solt, Laura A. Griffin, Patrick R. Kojetin, Douglas J. Nat Commun Article Nuclear receptor (NR) transcription factors use a conserved activation function-2 (AF-2) helix 12 mechanism for agonist-induced coactivator interaction and NR transcriptional activation. In contrast, ligand-induced corepressor-dependent NR repression appears to occur through structurally diverse mechanisms. We report two crystal structures of peroxisome proliferator-activated receptor gamma (PPARγ) in an inverse agonist/corepressor-bound transcriptionally repressive conformation. Helix 12 is displaced from the solvent-exposed active conformation and occupies the orthosteric ligand-binding pocket enabled by a conformational change that doubles the pocket volume. Paramagnetic relaxation enhancement (PRE) NMR and chemical crosslinking mass spectrometry confirm the repressive helix 12 conformation. PRE NMR also defines the mechanism of action of the corepressor-selective inverse agonist T0070907, and reveals that apo-helix 12 exchanges between transcriptionally active and repressive conformations—supporting a fundamental hypothesis in the NR field that helix 12 exchanges between transcriptionally active and repressive conformations. Nature Publishing Group UK 2020-02-19 /pmc/articles/PMC7031403/ /pubmed/32075969 http://dx.doi.org/10.1038/s41467-020-14750-x Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Shang, Jinsai
Mosure, Sarah A.
Zheng, Jie
Brust, Richard
Bass, Jared
Nichols, Ashley
Solt, Laura A.
Griffin, Patrick R.
Kojetin, Douglas J.
A molecular switch regulating transcriptional repression and activation of PPARγ
title A molecular switch regulating transcriptional repression and activation of PPARγ
title_full A molecular switch regulating transcriptional repression and activation of PPARγ
title_fullStr A molecular switch regulating transcriptional repression and activation of PPARγ
title_full_unstemmed A molecular switch regulating transcriptional repression and activation of PPARγ
title_short A molecular switch regulating transcriptional repression and activation of PPARγ
title_sort molecular switch regulating transcriptional repression and activation of pparγ
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7031403/
https://www.ncbi.nlm.nih.gov/pubmed/32075969
http://dx.doi.org/10.1038/s41467-020-14750-x
work_keys_str_mv AT shangjinsai amolecularswitchregulatingtranscriptionalrepressionandactivationofpparg
AT mosuresaraha amolecularswitchregulatingtranscriptionalrepressionandactivationofpparg
AT zhengjie amolecularswitchregulatingtranscriptionalrepressionandactivationofpparg
AT brustrichard amolecularswitchregulatingtranscriptionalrepressionandactivationofpparg
AT bassjared amolecularswitchregulatingtranscriptionalrepressionandactivationofpparg
AT nicholsashley amolecularswitchregulatingtranscriptionalrepressionandactivationofpparg
AT soltlauraa amolecularswitchregulatingtranscriptionalrepressionandactivationofpparg
AT griffinpatrickr amolecularswitchregulatingtranscriptionalrepressionandactivationofpparg
AT kojetindouglasj amolecularswitchregulatingtranscriptionalrepressionandactivationofpparg
AT shangjinsai molecularswitchregulatingtranscriptionalrepressionandactivationofpparg
AT mosuresaraha molecularswitchregulatingtranscriptionalrepressionandactivationofpparg
AT zhengjie molecularswitchregulatingtranscriptionalrepressionandactivationofpparg
AT brustrichard molecularswitchregulatingtranscriptionalrepressionandactivationofpparg
AT bassjared molecularswitchregulatingtranscriptionalrepressionandactivationofpparg
AT nicholsashley molecularswitchregulatingtranscriptionalrepressionandactivationofpparg
AT soltlauraa molecularswitchregulatingtranscriptionalrepressionandactivationofpparg
AT griffinpatrickr molecularswitchregulatingtranscriptionalrepressionandactivationofpparg
AT kojetindouglasj molecularswitchregulatingtranscriptionalrepressionandactivationofpparg