Cargando…
Performance of a mixture model by the degree of a missing categorical covariate when estimating clearance in NONMEM
The accuracy and predictability of mixture models in NONMEM® may change depending on the relative size of inter-individual differences and the size of the differences in the parameters between subpopulations. This study explored the accuracy of mixture models when dealing with missing a categorical...
Autores principales: | Yoon, SeokKyu, Lim, Hyeong-Seok |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Society for Clinical Pharmacology and Therapeutics
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7032962/ https://www.ncbi.nlm.nih.gov/pubmed/32095482 http://dx.doi.org/10.12793/tcp.2019.27.4.141 |
Ejemplares similares
-
Evaluation of the estimation and classification performance of NONMEM when applying mixture model for drug clearance
por: Hui, Ka Ho, et al.
Publicado: (2021) -
Multiple Imputation of Missing Covariates in NONMEM and Evaluation of the Method’s Sensitivity to η-Shrinkage
por: Johansson, Åsa M., et al.
Publicado: (2013) -
Standard Error of Empirical Bayes Estimate in NONMEM® VI
por: Kang, Dongwoo, et al.
Publicado: (2012) -
Erratum: R-based reproduction of the estimation process hidden behind NONMEM Part 2: First-order conditional estimation
por: Bae, Kyun-Seop, et al.
Publicado: (2018) -
NONMEM Tutorial Part II: Estimation Methods and Advanced Examples
por: Bauer, Robert J.
Publicado: (2019)