Cargando…
Flexible Data Trimming Improves Performance of Global Machine Learning Methods in Omics-Based Personalized Oncology
(1) Background: Machine learning (ML) methods are rarely used for an omics-based prescription of cancer drugs, due to shortage of case histories with clinical outcome supplemented by high-throughput molecular data. This causes overtraining and high vulnerability of most ML methods. Recently, we prop...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7037338/ https://www.ncbi.nlm.nih.gov/pubmed/31979006 http://dx.doi.org/10.3390/ijms21030713 |