Cargando…
Flexible Data Trimming Improves Performance of Global Machine Learning Methods in Omics-Based Personalized Oncology
(1) Background: Machine learning (ML) methods are rarely used for an omics-based prescription of cancer drugs, due to shortage of case histories with clinical outcome supplemented by high-throughput molecular data. This causes overtraining and high vulnerability of most ML methods. Recently, we prop...
Autores principales: | Tkachev, Victor, Sorokin, Maxim, Borisov, Constantin, Garazha, Andrew, Buzdin, Anton, Borisov, Nicolas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7037338/ https://www.ncbi.nlm.nih.gov/pubmed/31979006 http://dx.doi.org/10.3390/ijms21030713 |
Ejemplares similares
-
FLOating-Window Projective Separator (FloWPS): A Data Trimming Tool for Support Vector Machines (SVM) to Improve Robustness of the Classifier
por: Tkachev, Victor, et al.
Publicado: (2019) -
Cancer gene expression profiles associated with clinical outcomes to chemotherapy treatments
por: Borisov, Nicolas, et al.
Publicado: (2020) -
New Paradigm of Machine Learning (ML) in Personalized Oncology: Data Trimming for Squeezing More Biomarkers From Clinical Datasets
por: Borisov, Nicolas, et al.
Publicado: (2019) -
Shambhala: a platform-agnostic data harmonizer for gene expression data
por: Borisov, Nicolas, et al.
Publicado: (2019) -
Profiling of Human Molecular Pathways Affected by Retrotransposons at the Level of Regulation by Transcription Factor Proteins
por: Nikitin, Daniil, et al.
Publicado: (2018)