Cargando…
Model-Aided Localization and Navigation for Underwater Gliders Using Single-Beacon Travel-Time Differences
An accurate motion model and reliable measurements are required for autonomous underwater vehicle localization and navigation in underwater environments. However, without a propeller, underwater gliders have limited maneuverability and carrying capacity, which brings difficulties for modeling and me...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7039302/ https://www.ncbi.nlm.nih.gov/pubmed/32046168 http://dx.doi.org/10.3390/s20030893 |
Sumario: | An accurate motion model and reliable measurements are required for autonomous underwater vehicle localization and navigation in underwater environments. However, without a propeller, underwater gliders have limited maneuverability and carrying capacity, which brings difficulties for modeling and measuring. In this paper, an extended Kalman filter (EKF)-based method, combining a modified kinematic model of underwater gliders with the travel-time differences between signals received from a single beacon, is proposed for estimating the glider positions in a predict-update cycle. First, to accurately establish a motion model for underwater gliders moving in the ocean, we introduce two modification parameters, the attack and drift angles, into a kinematic model of underwater gliders, along with depth-averaged current velocities. The attack and drift angles are calculated based on the coefficients of hydrodynamic forces and the sensor-measured angle variation over time. Then, instead of satisfying synchronization requirements, the travel-time differences between signals received from a single beacon, multiplied by the sound speed, are taken as the measurements. To further reduce the EKF estimation error, the Rauch-Tung-Striebel (RTS) smoothing method is merged into the EKF system. The proposed method is tested in a virtual spatiotemporal environment from an ocean model. The experimental results show that the performance of the RTS-EKF estimate is improved when compared with the motion model estimate, especially by 46% at the inflection point, at least in the particular study developed in this article. |
---|