Cargando…
Spatial modeling of prostate cancer metabolic gene expression reveals extensive heterogeneity and selective vulnerabilities
Spatial heterogeneity is a fundamental feature of the tumor microenvironment (TME), and tackling spatial heterogeneity in neoplastic metabolic aberrations is critical for tumor treatment. Genome-scale metabolic network models have been used successfully to simulate cancer metabolic networks. However...
Autores principales: | Wang, Yuliang, Ma, Shuyi, Ruzzo, Walter L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7044328/ https://www.ncbi.nlm.nih.gov/pubmed/32103057 http://dx.doi.org/10.1038/s41598-020-60384-w |
Ejemplares similares
-
A Regression-based K nearest neighbor algorithm for gene function prediction from heterogeneous data
por: Yao, Zizhen, et al.
Publicado: (2006) -
Spatial maps of prostate cancer transcriptomes reveal an unexplored landscape of heterogeneity
por: Berglund, Emelie, et al.
Publicado: (2018) -
Assessment on Agricultural Drought Vulnerability and Spatial Heterogeneity Study in China
por: Guo, Hongpeng, et al.
Publicado: (2021) -
Integrated spatial transcriptome and metabolism study reveals metabolic heterogeneity in human injured brain
por: Zheng, Ping, et al.
Publicado: (2023) -
Extensive transcriptional heterogeneity revealed by isoform profiling
por: Pelechano, Vicent, et al.
Publicado: (2013)