Cargando…

Large-scale public data reuse to model immunotherapy response and resistance

Despite growing numbers of immune checkpoint blockade (ICB) trials with available omics data, it remains challenging to evaluate the robustness of ICB response and immune evasion mechanisms comprehensively. To address these challenges, we integrated large-scale omics data and biomarkers on published...

Descripción completa

Detalles Bibliográficos
Autores principales: Fu, Jingxin, Li, Karen, Zhang, Wubing, Wan, Changxin, Zhang, Jing, Jiang, Peng, Liu, X. Shirley
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7045518/
https://www.ncbi.nlm.nih.gov/pubmed/32102694
http://dx.doi.org/10.1186/s13073-020-0721-z
_version_ 1783501792007421952
author Fu, Jingxin
Li, Karen
Zhang, Wubing
Wan, Changxin
Zhang, Jing
Jiang, Peng
Liu, X. Shirley
author_facet Fu, Jingxin
Li, Karen
Zhang, Wubing
Wan, Changxin
Zhang, Jing
Jiang, Peng
Liu, X. Shirley
author_sort Fu, Jingxin
collection PubMed
description Despite growing numbers of immune checkpoint blockade (ICB) trials with available omics data, it remains challenging to evaluate the robustness of ICB response and immune evasion mechanisms comprehensively. To address these challenges, we integrated large-scale omics data and biomarkers on published ICB trials, non-immunotherapy tumor profiles, and CRISPR screens on a web platform TIDE (http://tide.dfci.harvard.edu). We processed the omics data for over 33K samples in 188 tumor cohorts from public databases, 998 tumors from 12 ICB clinical studies, and eight CRISPR screens that identified gene modulators of the anticancer immune response. Integrating these data on the TIDE web platform with three interactive analysis modules, we demonstrate the utility of public data reuse in hypothesis generation, biomarker optimization, and patient stratification.
format Online
Article
Text
id pubmed-7045518
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-70455182020-03-03 Large-scale public data reuse to model immunotherapy response and resistance Fu, Jingxin Li, Karen Zhang, Wubing Wan, Changxin Zhang, Jing Jiang, Peng Liu, X. Shirley Genome Med Database Despite growing numbers of immune checkpoint blockade (ICB) trials with available omics data, it remains challenging to evaluate the robustness of ICB response and immune evasion mechanisms comprehensively. To address these challenges, we integrated large-scale omics data and biomarkers on published ICB trials, non-immunotherapy tumor profiles, and CRISPR screens on a web platform TIDE (http://tide.dfci.harvard.edu). We processed the omics data for over 33K samples in 188 tumor cohorts from public databases, 998 tumors from 12 ICB clinical studies, and eight CRISPR screens that identified gene modulators of the anticancer immune response. Integrating these data on the TIDE web platform with three interactive analysis modules, we demonstrate the utility of public data reuse in hypothesis generation, biomarker optimization, and patient stratification. BioMed Central 2020-02-26 /pmc/articles/PMC7045518/ /pubmed/32102694 http://dx.doi.org/10.1186/s13073-020-0721-z Text en © The Author(s). 2020 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Database
Fu, Jingxin
Li, Karen
Zhang, Wubing
Wan, Changxin
Zhang, Jing
Jiang, Peng
Liu, X. Shirley
Large-scale public data reuse to model immunotherapy response and resistance
title Large-scale public data reuse to model immunotherapy response and resistance
title_full Large-scale public data reuse to model immunotherapy response and resistance
title_fullStr Large-scale public data reuse to model immunotherapy response and resistance
title_full_unstemmed Large-scale public data reuse to model immunotherapy response and resistance
title_short Large-scale public data reuse to model immunotherapy response and resistance
title_sort large-scale public data reuse to model immunotherapy response and resistance
topic Database
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7045518/
https://www.ncbi.nlm.nih.gov/pubmed/32102694
http://dx.doi.org/10.1186/s13073-020-0721-z
work_keys_str_mv AT fujingxin largescalepublicdatareusetomodelimmunotherapyresponseandresistance
AT likaren largescalepublicdatareusetomodelimmunotherapyresponseandresistance
AT zhangwubing largescalepublicdatareusetomodelimmunotherapyresponseandresistance
AT wanchangxin largescalepublicdatareusetomodelimmunotherapyresponseandresistance
AT zhangjing largescalepublicdatareusetomodelimmunotherapyresponseandresistance
AT jiangpeng largescalepublicdatareusetomodelimmunotherapyresponseandresistance
AT liuxshirley largescalepublicdatareusetomodelimmunotherapyresponseandresistance