Cargando…
SHARP: hyperfast and accurate processing of single-cell RNA-seq data via ensemble random projection
To process large-scale single-cell RNA-sequencing (scRNA-seq) data effectively without excessive distortion during dimension reduction, we present SHARP, an ensemble random projection-based algorithm that is scalable to clustering 10 million cells. Comprehensive benchmarking tests on 17 public scRNA...
Autores principales: | Wan, Shibiao, Kim, Junil, Won, Kyoung Jae |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7050522/ https://www.ncbi.nlm.nih.gov/pubmed/31992615 http://dx.doi.org/10.1101/gr.254557.119 |
Ejemplares similares
-
CellBIC: bimodality-based top-down clustering of single-cell RNA sequencing data reveals hierarchical structure of the cell type
por: Kim, Junil, et al.
Publicado: (2018) -
STARRPeaker: uniform processing and accurate identification of STARR-seq active regions
por: Lee, Donghoon, et al.
Publicado: (2020) -
TENET: gene network reconstruction using transfer entropy reveals key regulatory factors from single cell transcriptomic data
por: Kim, Junil, et al.
Publicado: (2020) -
Linear-time cluster ensembles of large-scale single-cell RNA-seq and multimodal data
por: Do, Van Hoan, et al.
Publicado: (2021) -
Accurate integration of multiple heterogeneous single-cell RNA-seq data sets by learning contrastive biological variation
por: Zhou, Yang, et al.
Publicado: (2023)