Cargando…

Mammalian ALKBH1 serves as an N(6)-mA demethylase of unpairing DNA

N(6)-methyladenine (N(6)-mA) of DNA is an emerging epigenetic mark in mammalian genome. Levels of N(6)-mA undergo drastic fluctuation during early embryogenesis, indicative of active regulation. Here we show that the 2-oxoglutarate-dependent oxygenase ALKBH1 functions as a nuclear eraser of N(6)-mA...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Min, Yang, Shumin, Nelakanti, Raman, Zhao, Wentao, Liu, Gaochao, Li, Zheng, Liu, Xiaohui, Wu, Tao, Xiao, Andrew, Li, Haitao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Singapore 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7054317/
https://www.ncbi.nlm.nih.gov/pubmed/32051560
http://dx.doi.org/10.1038/s41422-019-0237-5
Descripción
Sumario:N(6)-methyladenine (N(6)-mA) of DNA is an emerging epigenetic mark in mammalian genome. Levels of N(6)-mA undergo drastic fluctuation during early embryogenesis, indicative of active regulation. Here we show that the 2-oxoglutarate-dependent oxygenase ALKBH1 functions as a nuclear eraser of N(6)-mA in unpairing regions (e.g., SIDD, Stress-Induced DNA Double Helix Destabilization regions) of mammalian genomes. Enzymatic profiling studies revealed that ALKBH1 prefers bubbled or bulged DNAs as substrate, instead of single-stranded (ss-) or double-stranded (ds-) DNAs. Structural studies of ALKBH1 revealed an unexpected “stretch-out” conformation of its “Flip1” motif, a conserved element that usually bends over catalytic center to facilitate substrate base flipping in other DNA demethylases. Thus, lack of a bending “Flip1” explains the observed preference of ALKBH1 for unpairing substrates, in which the flipped N(6)-mA is primed for catalysis. Co-crystal structural studies of ALKBH1 bound to a 21-mer bulged DNA explained the need of both flanking duplexes and a flipped base for recognition and catalysis. Key elements (e.g., an ALKBH1-specific α1 helix) as well as residues contributing to structural integrity and catalytic activity were validated by structure-based mutagenesis studies. Furthermore, ssDNA-seq and DIP-seq analyses revealed significant co-occurrence of base unpairing regions with N(6)-mA in mouse genome. Collectively, our biochemical, structural and genomic studies suggest that ALKBH1 is an important DNA demethylase that regulates genome N(6)-mA turnover of unpairing regions associated with dynamic chromosome regulation.