Cargando…
Muscle‐derived GDF15 drives diurnal anorexia and systemic metabolic remodeling during mitochondrial stress
Mitochondrial dysfunction promotes metabolic stress responses in a cell‐autonomous as well as organismal manner. The wasting hormone growth differentiation factor 15 (GDF15) is recognized as a biomarker of mitochondrial disorders, but its pathophysiological function remains elusive. To test the hypo...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7054681/ https://www.ncbi.nlm.nih.gov/pubmed/32026535 http://dx.doi.org/10.15252/embr.201948804 |
_version_ | 1783503237455806464 |
---|---|
author | Ost, Mario Igual Gil, Carla Coleman, Verena Keipert, Susanne Efstathiou, Sotirios Vidic, Veronika Weyers, Miriam Klaus, Susanne |
author_facet | Ost, Mario Igual Gil, Carla Coleman, Verena Keipert, Susanne Efstathiou, Sotirios Vidic, Veronika Weyers, Miriam Klaus, Susanne |
author_sort | Ost, Mario |
collection | PubMed |
description | Mitochondrial dysfunction promotes metabolic stress responses in a cell‐autonomous as well as organismal manner. The wasting hormone growth differentiation factor 15 (GDF15) is recognized as a biomarker of mitochondrial disorders, but its pathophysiological function remains elusive. To test the hypothesis that GDF15 is fundamental to the metabolic stress response during mitochondrial dysfunction, we investigated transgenic mice (Ucp1‐TG) with compromised muscle‐specific mitochondrial OXPHOS capacity via respiratory uncoupling. Ucp1‐TG mice show a skeletal muscle‐specific induction and diurnal variation of GDF15 as a myokine. Remarkably, genetic loss of GDF15 in Ucp1‐TG mice does not affect muscle wasting or transcriptional cell‐autonomous stress response but promotes a progressive increase in body fat mass. Furthermore, muscle mitochondrial stress‐induced systemic metabolic flexibility, insulin sensitivity, and white adipose tissue browning are fully abolished in the absence of GDF15. Mechanistically, we uncovered a GDF15‐dependent daytime‐restricted anorexia, whereas GDF15 is unable to suppress food intake at night. Altogether, our evidence suggests a novel diurnal action and key pathophysiological role of mitochondrial stress‐induced GDF15 in the regulation of systemic energy metabolism. |
format | Online Article Text |
id | pubmed-7054681 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-70546812020-03-09 Muscle‐derived GDF15 drives diurnal anorexia and systemic metabolic remodeling during mitochondrial stress Ost, Mario Igual Gil, Carla Coleman, Verena Keipert, Susanne Efstathiou, Sotirios Vidic, Veronika Weyers, Miriam Klaus, Susanne EMBO Rep Articles Mitochondrial dysfunction promotes metabolic stress responses in a cell‐autonomous as well as organismal manner. The wasting hormone growth differentiation factor 15 (GDF15) is recognized as a biomarker of mitochondrial disorders, but its pathophysiological function remains elusive. To test the hypothesis that GDF15 is fundamental to the metabolic stress response during mitochondrial dysfunction, we investigated transgenic mice (Ucp1‐TG) with compromised muscle‐specific mitochondrial OXPHOS capacity via respiratory uncoupling. Ucp1‐TG mice show a skeletal muscle‐specific induction and diurnal variation of GDF15 as a myokine. Remarkably, genetic loss of GDF15 in Ucp1‐TG mice does not affect muscle wasting or transcriptional cell‐autonomous stress response but promotes a progressive increase in body fat mass. Furthermore, muscle mitochondrial stress‐induced systemic metabolic flexibility, insulin sensitivity, and white adipose tissue browning are fully abolished in the absence of GDF15. Mechanistically, we uncovered a GDF15‐dependent daytime‐restricted anorexia, whereas GDF15 is unable to suppress food intake at night. Altogether, our evidence suggests a novel diurnal action and key pathophysiological role of mitochondrial stress‐induced GDF15 in the regulation of systemic energy metabolism. John Wiley and Sons Inc. 2020-02-06 2020-03-04 /pmc/articles/PMC7054681/ /pubmed/32026535 http://dx.doi.org/10.15252/embr.201948804 Text en © 2020 The Authors. Published under the terms of the CC BY 4.0 license This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Articles Ost, Mario Igual Gil, Carla Coleman, Verena Keipert, Susanne Efstathiou, Sotirios Vidic, Veronika Weyers, Miriam Klaus, Susanne Muscle‐derived GDF15 drives diurnal anorexia and systemic metabolic remodeling during mitochondrial stress |
title | Muscle‐derived GDF15 drives diurnal anorexia and systemic metabolic remodeling during mitochondrial stress |
title_full | Muscle‐derived GDF15 drives diurnal anorexia and systemic metabolic remodeling during mitochondrial stress |
title_fullStr | Muscle‐derived GDF15 drives diurnal anorexia and systemic metabolic remodeling during mitochondrial stress |
title_full_unstemmed | Muscle‐derived GDF15 drives diurnal anorexia and systemic metabolic remodeling during mitochondrial stress |
title_short | Muscle‐derived GDF15 drives diurnal anorexia and systemic metabolic remodeling during mitochondrial stress |
title_sort | muscle‐derived gdf15 drives diurnal anorexia and systemic metabolic remodeling during mitochondrial stress |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7054681/ https://www.ncbi.nlm.nih.gov/pubmed/32026535 http://dx.doi.org/10.15252/embr.201948804 |
work_keys_str_mv | AT ostmario musclederivedgdf15drivesdiurnalanorexiaandsystemicmetabolicremodelingduringmitochondrialstress AT igualgilcarla musclederivedgdf15drivesdiurnalanorexiaandsystemicmetabolicremodelingduringmitochondrialstress AT colemanverena musclederivedgdf15drivesdiurnalanorexiaandsystemicmetabolicremodelingduringmitochondrialstress AT keipertsusanne musclederivedgdf15drivesdiurnalanorexiaandsystemicmetabolicremodelingduringmitochondrialstress AT efstathiousotirios musclederivedgdf15drivesdiurnalanorexiaandsystemicmetabolicremodelingduringmitochondrialstress AT vidicveronika musclederivedgdf15drivesdiurnalanorexiaandsystemicmetabolicremodelingduringmitochondrialstress AT weyersmiriam musclederivedgdf15drivesdiurnalanorexiaandsystemicmetabolicremodelingduringmitochondrialstress AT klaussusanne musclederivedgdf15drivesdiurnalanorexiaandsystemicmetabolicremodelingduringmitochondrialstress |