Cargando…

Differential turnover of Nup188 controls its levels at centrosomes and role in centriole duplication

NUP188 encodes a scaffold component of the nuclear pore complex (NPC) and has been implicated as a congenital heart disease gene through an ill-defined function at centrioles. Here, we explore the mechanisms that physically and functionally segregate Nup188 between the pericentriolar material (PCM)...

Descripción completa

Detalles Bibliográficos
Autores principales: Vishnoi, Nidhi, Dhanasekeran, Karthigeyan, Chalfant, Madeleine, Surovstev, Ivan, Khokha, Mustafa K., Lusk, C. Patrick
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Rockefeller University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7055002/
https://www.ncbi.nlm.nih.gov/pubmed/32211895
http://dx.doi.org/10.1083/jcb.201906031
Descripción
Sumario:NUP188 encodes a scaffold component of the nuclear pore complex (NPC) and has been implicated as a congenital heart disease gene through an ill-defined function at centrioles. Here, we explore the mechanisms that physically and functionally segregate Nup188 between the pericentriolar material (PCM) and NPCs. Pulse-chase fluorescent labeling indicates that Nup188 populates centrosomes with newly synthesized protein that does not exchange with NPCs even after mitotic NPC breakdown. In addition, the steady-state levels of Nup188 are controlled by the sensitivity of the PCM pool, but not the NPC pool, to proteasomal degradation. Proximity-labeling and super-resolution microscopy show that Nup188 is vicinal to the inner core of the interphase centrosome. Consistent with this, we demonstrate direct binding between Nup188 and Cep152. We further show that Nup188 functions in centriole duplication at or upstream of Sas6 loading. Together, our data establish Nup188 as a component of PCM needed to duplicate the centriole with implications for congenital heart disease mechanisms.