Cargando…
Targeting extracellular nutrient dependencies of cancer cells
BACKGROUND: Cancer cells rewire their metabolism to meet the energetic and biosynthetic demands of their high proliferation rates and environment. Metabolic reprogramming of cancer cells may result in strong dependencies on nutrients that could be exploited for therapy. While these dependencies may...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7056928/ https://www.ncbi.nlm.nih.gov/pubmed/31926876 http://dx.doi.org/10.1016/j.molmet.2019.11.011 |
_version_ | 1783503562735616000 |
---|---|
author | Garcia-Bermudez, Javier Williams, Robert T. Guarecuco, Rohiverth Birsoy, Kıvanç |
author_facet | Garcia-Bermudez, Javier Williams, Robert T. Guarecuco, Rohiverth Birsoy, Kıvanç |
author_sort | Garcia-Bermudez, Javier |
collection | PubMed |
description | BACKGROUND: Cancer cells rewire their metabolism to meet the energetic and biosynthetic demands of their high proliferation rates and environment. Metabolic reprogramming of cancer cells may result in strong dependencies on nutrients that could be exploited for therapy. While these dependencies may be in part due to the nutrient environment of tumors, mutations or expression changes in metabolic genes also reprogram metabolic pathways and create addictions to extracellular nutrients. SCOPE OF REVIEW: This review summarizes the major nutrient dependencies of cancer cells focusing on their discovery and potential mechanisms by which metabolites become limiting for tumor growth. We further detail available therapeutic interventions based on these metabolic features and highlight opportunities for restricting nutrient availability as an anti-cancer strategy. MAJOR CONCLUSIONS: Strategies to limit nutrients required for tumor growth using dietary interventions or nutrient degrading enzymes have previously been suggested for cancer therapy. The best clinical example of exploiting cancer nutrient dependencies is the treatment of leukemia with l-asparaginase, a first-line chemotherapeutic that depletes serum asparagine. Despite the success of nutrient starvation in blood cancers, it remains unclear whether this approach could be extended to other solid tumors. Systematic studies to identify nutrient dependencies unique to individual tumor types have the potential to discover targets for therapy. |
format | Online Article Text |
id | pubmed-7056928 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-70569282020-03-09 Targeting extracellular nutrient dependencies of cancer cells Garcia-Bermudez, Javier Williams, Robert T. Guarecuco, Rohiverth Birsoy, Kıvanç Mol Metab Article BACKGROUND: Cancer cells rewire their metabolism to meet the energetic and biosynthetic demands of their high proliferation rates and environment. Metabolic reprogramming of cancer cells may result in strong dependencies on nutrients that could be exploited for therapy. While these dependencies may be in part due to the nutrient environment of tumors, mutations or expression changes in metabolic genes also reprogram metabolic pathways and create addictions to extracellular nutrients. SCOPE OF REVIEW: This review summarizes the major nutrient dependencies of cancer cells focusing on their discovery and potential mechanisms by which metabolites become limiting for tumor growth. We further detail available therapeutic interventions based on these metabolic features and highlight opportunities for restricting nutrient availability as an anti-cancer strategy. MAJOR CONCLUSIONS: Strategies to limit nutrients required for tumor growth using dietary interventions or nutrient degrading enzymes have previously been suggested for cancer therapy. The best clinical example of exploiting cancer nutrient dependencies is the treatment of leukemia with l-asparaginase, a first-line chemotherapeutic that depletes serum asparagine. Despite the success of nutrient starvation in blood cancers, it remains unclear whether this approach could be extended to other solid tumors. Systematic studies to identify nutrient dependencies unique to individual tumor types have the potential to discover targets for therapy. Elsevier 2019-11-23 /pmc/articles/PMC7056928/ /pubmed/31926876 http://dx.doi.org/10.1016/j.molmet.2019.11.011 Text en http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Garcia-Bermudez, Javier Williams, Robert T. Guarecuco, Rohiverth Birsoy, Kıvanç Targeting extracellular nutrient dependencies of cancer cells |
title | Targeting extracellular nutrient dependencies of cancer cells |
title_full | Targeting extracellular nutrient dependencies of cancer cells |
title_fullStr | Targeting extracellular nutrient dependencies of cancer cells |
title_full_unstemmed | Targeting extracellular nutrient dependencies of cancer cells |
title_short | Targeting extracellular nutrient dependencies of cancer cells |
title_sort | targeting extracellular nutrient dependencies of cancer cells |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7056928/ https://www.ncbi.nlm.nih.gov/pubmed/31926876 http://dx.doi.org/10.1016/j.molmet.2019.11.011 |
work_keys_str_mv | AT garciabermudezjavier targetingextracellularnutrientdependenciesofcancercells AT williamsrobertt targetingextracellularnutrientdependenciesofcancercells AT guarecucorohiverth targetingextracellularnutrientdependenciesofcancercells AT birsoykıvanc targetingextracellularnutrientdependenciesofcancercells |