Cargando…
Trajectory-based differential expression analysis for single-cell sequencing data
Trajectory inference has radically enhanced single-cell RNA-seq research by enabling the study of dynamic changes in gene expression. Downstream of trajectory inference, it is vital to discover genes that are (i) associated with the lineages in the trajectory, or (ii) differentially expressed betwee...
Autores principales: | Van den Berge, Koen, Roux de Bézieux, Hector, Street, Kelly, Saelens, Wouter, Cannoodt, Robrecht, Saeys, Yvan, Dudoit, Sandrine, Clement, Lieven |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7058077/ https://www.ncbi.nlm.nih.gov/pubmed/32139671 http://dx.doi.org/10.1038/s41467-020-14766-3 |
Ejemplares similares
-
TinGa: fast and flexible trajectory inference with Growing Neural Gas
por: Todorov, Helena, et al.
Publicado: (2020) -
A comprehensive evaluation of module detection methods for gene expression data
por: Saelens, Wouter, et al.
Publicado: (2018) -
Spearheading future omics analyses using dyngen, a multi-modal simulator of single cells
por: Cannoodt, Robrecht, et al.
Publicado: (2021) -
Normalization benchmark of ATAC-seq datasets shows the importance of accounting for GC-content effects
por: Van den Berge, Koen, et al.
Publicado: (2022) -
Essential guidelines for computational method benchmarking
por: Weber, Lukas M., et al.
Publicado: (2019)