Cargando…
Hyperglycaemia does not increase perfusion deficits after focal cerebral ischaemia in male Wistar rats
BACKGROUND: Hyperglycaemia is associated with a worse outcome in acute ischaemic stroke patients; yet the pathophysiological mechanisms of hyperglycaemia-induced damage are poorly understood. We hypothesised that hyperglycaemia at the time of stroke onset exacerbates ischaemic brain damage by increa...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7058243/ https://www.ncbi.nlm.nih.gov/pubmed/32166145 http://dx.doi.org/10.1177/2398212818794820 |
_version_ | 1783503824266199040 |
---|---|
author | Thow, Lisa A. MacDonald, Kathleen Holmes, William M. Muir, Keith W. Macrae, I. Mhairi Dewar, Deborah |
author_facet | Thow, Lisa A. MacDonald, Kathleen Holmes, William M. Muir, Keith W. Macrae, I. Mhairi Dewar, Deborah |
author_sort | Thow, Lisa A. |
collection | PubMed |
description | BACKGROUND: Hyperglycaemia is associated with a worse outcome in acute ischaemic stroke patients; yet the pathophysiological mechanisms of hyperglycaemia-induced damage are poorly understood. We hypothesised that hyperglycaemia at the time of stroke onset exacerbates ischaemic brain damage by increasing the severity of the blood flow deficit. METHODS: Adult, male Wistar rats were randomly assigned to receive vehicle or glucose solutions prior to permanent middle cerebral artery occlusion. Cerebral blood flow was assessed semi-quantitatively either 1 h after middle cerebral artery occlusion using (99m)Tc-D, L-hexamethylpropyleneamine oxime ((99m)Tc-HMPAO) autoradiography or, in a separate study, using quantitative pseudo-continuous arterial spin labelling for 4 h after middle cerebral artery occlusion. Diffusion weighted imaging was performed alongside pseudo-continuous arterial spin labelling and acute lesion volumes calculated from apparent diffusion coefficient maps. Infarct volume was measured at 24 h using rapid acquisition with refocused echoes T(2)-weighted magnetic resonance imaging. RESULTS: Glucose administration had no effect on the severity of ischaemia when assessed by either (99m)Tc-HMPAO autoradiography or pseudo-continuous arterial spin labelling perfusion imaging. In comparison to the vehicle group, apparent diffusion coefficient–derived lesion volume 2–4 h post-middle cerebral artery occlusion and infarct volume 24 h post-middle cerebral artery occlusion were significantly greater in the glucose group. CONCLUSIONS: Hyperglycaemia increased acute lesion and infarct volumes but there was no evidence that the acute blood flow deficit was exacerbated. The data reinforce the conclusion that the detrimental effects of hyperglycaemia are rapid, and that treatment of post-stroke hyperglycaemia in the acute period is essential but the mechanisms of hyperglycaemia-induced harm remain unclear. |
format | Online Article Text |
id | pubmed-7058243 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | SAGE Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-70582432020-03-12 Hyperglycaemia does not increase perfusion deficits after focal cerebral ischaemia in male Wistar rats Thow, Lisa A. MacDonald, Kathleen Holmes, William M. Muir, Keith W. Macrae, I. Mhairi Dewar, Deborah Brain Neurosci Adv Research Paper BACKGROUND: Hyperglycaemia is associated with a worse outcome in acute ischaemic stroke patients; yet the pathophysiological mechanisms of hyperglycaemia-induced damage are poorly understood. We hypothesised that hyperglycaemia at the time of stroke onset exacerbates ischaemic brain damage by increasing the severity of the blood flow deficit. METHODS: Adult, male Wistar rats were randomly assigned to receive vehicle or glucose solutions prior to permanent middle cerebral artery occlusion. Cerebral blood flow was assessed semi-quantitatively either 1 h after middle cerebral artery occlusion using (99m)Tc-D, L-hexamethylpropyleneamine oxime ((99m)Tc-HMPAO) autoradiography or, in a separate study, using quantitative pseudo-continuous arterial spin labelling for 4 h after middle cerebral artery occlusion. Diffusion weighted imaging was performed alongside pseudo-continuous arterial spin labelling and acute lesion volumes calculated from apparent diffusion coefficient maps. Infarct volume was measured at 24 h using rapid acquisition with refocused echoes T(2)-weighted magnetic resonance imaging. RESULTS: Glucose administration had no effect on the severity of ischaemia when assessed by either (99m)Tc-HMPAO autoradiography or pseudo-continuous arterial spin labelling perfusion imaging. In comparison to the vehicle group, apparent diffusion coefficient–derived lesion volume 2–4 h post-middle cerebral artery occlusion and infarct volume 24 h post-middle cerebral artery occlusion were significantly greater in the glucose group. CONCLUSIONS: Hyperglycaemia increased acute lesion and infarct volumes but there was no evidence that the acute blood flow deficit was exacerbated. The data reinforce the conclusion that the detrimental effects of hyperglycaemia are rapid, and that treatment of post-stroke hyperglycaemia in the acute period is essential but the mechanisms of hyperglycaemia-induced harm remain unclear. SAGE Publications 2018-08-20 /pmc/articles/PMC7058243/ /pubmed/32166145 http://dx.doi.org/10.1177/2398212818794820 Text en © The Author(s) 2018 http://www.creativecommons.org/licenses/by-nc/4.0/ This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage). |
spellingShingle | Research Paper Thow, Lisa A. MacDonald, Kathleen Holmes, William M. Muir, Keith W. Macrae, I. Mhairi Dewar, Deborah Hyperglycaemia does not increase perfusion deficits after focal cerebral ischaemia in male Wistar rats |
title | Hyperglycaemia does not increase perfusion deficits after focal cerebral ischaemia in male Wistar rats |
title_full | Hyperglycaemia does not increase perfusion deficits after focal cerebral ischaemia in male Wistar rats |
title_fullStr | Hyperglycaemia does not increase perfusion deficits after focal cerebral ischaemia in male Wistar rats |
title_full_unstemmed | Hyperglycaemia does not increase perfusion deficits after focal cerebral ischaemia in male Wistar rats |
title_short | Hyperglycaemia does not increase perfusion deficits after focal cerebral ischaemia in male Wistar rats |
title_sort | hyperglycaemia does not increase perfusion deficits after focal cerebral ischaemia in male wistar rats |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7058243/ https://www.ncbi.nlm.nih.gov/pubmed/32166145 http://dx.doi.org/10.1177/2398212818794820 |
work_keys_str_mv | AT thowlisaa hyperglycaemiadoesnotincreaseperfusiondeficitsafterfocalcerebralischaemiainmalewistarrats AT macdonaldkathleen hyperglycaemiadoesnotincreaseperfusiondeficitsafterfocalcerebralischaemiainmalewistarrats AT holmeswilliamm hyperglycaemiadoesnotincreaseperfusiondeficitsafterfocalcerebralischaemiainmalewistarrats AT muirkeithw hyperglycaemiadoesnotincreaseperfusiondeficitsafterfocalcerebralischaemiainmalewistarrats AT macraeimhairi hyperglycaemiadoesnotincreaseperfusiondeficitsafterfocalcerebralischaemiainmalewistarrats AT dewardeborah hyperglycaemiadoesnotincreaseperfusiondeficitsafterfocalcerebralischaemiainmalewistarrats |