Cargando…
EXP2SL: A Machine Learning Framework for Cell-Line-Specific Synthetic Lethality Prediction
Synthetic lethality (SL), an important type of genetic interaction, can provide useful insight into the target identification process for the development of anticancer therapeutics. Although several well-established SL gene pairs have been verified to be conserved in humans, most SL interactions rem...
Autores principales: | Wan, Fangping, Li, Shuya, Tian, Tingzhong, Lei, Yipin, Zhao, Dan, Zeng, Jianyang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7058988/ https://www.ncbi.nlm.nih.gov/pubmed/32184722 http://dx.doi.org/10.3389/fphar.2020.00112 |
Ejemplares similares
-
A deep-learning framework for multi-level peptide–protein interaction prediction
por: Lei, Yipin, et al.
Publicado: (2021) -
Rapid-SL identifies synthetic lethal sets with an arbitrary cardinality
por: Dehghan Manshadi, Mehdi, et al.
Publicado: (2022) -
Full-length ribosome density prediction by a multi-input and multi-output model
por: Tian, Tingzhong, et al.
Publicado: (2021) -
KR4SL: knowledge graph reasoning for explainable prediction of synthetic lethality
por: Zhang, Ke, et al.
Publicado: (2023) -
SL-scan identifies synthetic lethal interactions in cancer using metabolic networks
por: Zangene, Ehsan, et al.
Publicado: (2023)