Cargando…
KCML: a machine‐learning framework for inference of multi‐scale gene functions from genetic perturbation screens
Characterising context‐dependent gene functions is crucial for understanding the genetic bases of health and disease. To date, inference of gene functions from large‐scale genetic perturbation screens is based on ad hoc analysis pipelines involving unsupervised clustering and functional enrichment....
Autores principales: | Sailem, Heba Z, Rittscher, Jens, Pelkmans, Lucas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7059140/ https://www.ncbi.nlm.nih.gov/pubmed/32141232 http://dx.doi.org/10.15252/msb.20199083 |
Ejemplares similares
-
Large‐scale image‐based profiling of single‐cell phenotypes in arrayed CRISPR‐Cas9 gene perturbation screens
por: de Groot, Reinoud, et al.
Publicado: (2018) -
DeepScratch: Single-cell based topological metrics of scratch wound assays
por: Javer, Avelino, et al.
Publicado: (2020) -
Phylodynamic Inference across Epidemic Scales
por: Volz, Erik M., et al.
Publicado: (2017) -
Variational Phylodynamic Inference Using Pandemic-scale Data
por: Ki, Caleb, et al.
Publicado: (2022) -
The Local Edge Machine: inference of dynamic models of gene regulation
por: McGoff, Kevin A., et al.
Publicado: (2016)