Cargando…
Loss of HNF1α Function Contributes to Hepatocyte Proliferation and Abnormal Cholesterol Metabolism via Downregulating miR-122: A Novel Mechanism of MODY3
PURPOSE: Mutations in hepatocyte nuclear factor 1α (HNF1α) are the cause of maturity-onset diabetes of the young type 3 (MODY3) and involved in the development of hepatocellular adenoma and abnormal lipid metabolism. Previously, we have found that the serum microRNA (miR)-122 levels in MODY3 patient...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7060037/ https://www.ncbi.nlm.nih.gov/pubmed/32184642 http://dx.doi.org/10.2147/DMSO.S236915 |
Sumario: | PURPOSE: Mutations in hepatocyte nuclear factor 1α (HNF1α) are the cause of maturity-onset diabetes of the young type 3 (MODY3) and involved in the development of hepatocellular adenoma and abnormal lipid metabolism. Previously, we have found that the serum microRNA (miR)-122 levels in MODY3 patients were lower than those in type 2 diabetes mellitus and healthy controls. This study aimed to investigate the mechanism of decreased miR-122 levels in patients with MODY3 and whether low levels of miR-122 mediate tumorigenesis and abnormal lipid metabolism associated with HNF1α deficiency in human hepatocytes. METHODS: The expression of miR-122 was examined by real-time PCR. Dual-luciferase reporter assay was performed to confirm the transcriptional regulation of miR-122 by HNF1α. HepG2 cells were transfected with siRNA or miRNA mimic to downregulate or upregulate the expression of HNF1α or miR-122, respectively. CCK-8 and colony formation assay were used to determine cell proliferation. Lipid accumulation was examined by Oil Red O staining and intracellular triglyceride and cholesterol quantification assays. RESULTS: HNF1α regulated the expression of miR-122 by directly binding to its promoter. Knockdown of HNF1α in HepG2 cells reduced the expression of miR-122, increased proliferation and promoted intracellular cholesterol accumulation. Overexpression of miR-122 partially rescued the phenotypes associated with HNF1α deficiency in human hepatocytes. Mechanistically, HNF1α modulated cholesterol homeostasis via miR-122-dependent activation of sterol regulatory element-binding protein-2 (SREBP-2) and regulation of proprotein convertase subtilisin/kexin type 9 (PCSK9). Moreover, circulating miR-122 levels were associated with serum cholesterol levels. CONCLUSION: Loss of HNF1α function led to hepatocyte proliferation and abnormal cholesterol metabolism by downregulating miR-122. Our findings revealed a novel mechanism that low levels of miR-122 mediate tumorigenesis and abnormal lipid metabolism associated with MODY3. MiR-122 may be a potential therapeutic target for the treatment of MODY3. |
---|