Cargando…
Replacing fishmeal with plant protein in Atlantic salmon (Salmo salar) diets by supplementation with fish protein hydrolysate
The effects of feeding an 80% plant protein diet, with and without fish protein hydrolysate (FPH) supplementation, on the growth and gut health of Atlantic salmon were investigated. Fish were fed either (A) a control diet containing 35% fishmeal, (B) an 80% plant protein diet with 15% fishmeal, (C)...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7060232/ https://www.ncbi.nlm.nih.gov/pubmed/32144276 http://dx.doi.org/10.1038/s41598-020-60325-7 |
Sumario: | The effects of feeding an 80% plant protein diet, with and without fish protein hydrolysate (FPH) supplementation, on the growth and gut health of Atlantic salmon were investigated. Fish were fed either (A) a control diet containing 35% fishmeal, (B) an 80% plant protein diet with 15% fishmeal, (C) an 80% plant protein diet with 5% fishmeal and 10% partly hydrolysed protein, or (D) an 80% plant protein diet with 5% fishmeal and 10% soluble protein hydrolysate. Fish on the 80% plant- 15% fishmeal diet were significantly smaller than fish in the other dietary groups. However, partly-hydrolysed protein supplementation allowed fish to grow as well as fish fed the control 35% fishmeal diet. Fish fed the FPH diets (diets C and D) had significantly higher levels of amino acids in their blood, including 48% and 27% more branched chain amino acids compared to fish on the 35% fishmeal diet, respectively. Plant protein significantly altered gut microbial composition, significantly decreasing α-diversity. Spirochaetes and the families Moritellaceae, Psychromonadaceae, Helicobacteraceae and Bacteroidaceae were all found at significantly lower abundances in the groups fed 80% plant protein diets compared to the control fishmeal diet. |
---|