Cargando…
A Novel System for Functional Determination of Variants of Uncertain Significance using Deep Convolutional Neural Networks
Many drugs are developed for commonly occurring, well studied cancer drivers such as vemurafenib for BRAF V600E and erlotinib for EGFR exon 19 mutations. However, most tumors also harbor mutations which have an uncertain role in disease formation, commonly called Variants of Uncertain Significance (...
Autores principales: | Zimmerman, Lior, Zelichov, Ori, Aizenmann, Arie, Barbash, Zohar, Vidne, Michael, Tarcic, Gabi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7060242/ https://www.ncbi.nlm.nih.gov/pubmed/32144301 http://dx.doi.org/10.1038/s41598-020-61173-1 |
Ejemplares similares
-
Revisited analysis of a SHIVA01 trial cohort using functional mutational analyses successfully predicted treatment outcome
por: Kamal, Maud, et al.
Publicado: (2018) -
Identification of osimertinib-resistant EGFR L792 mutations by cfDNA sequencing: oncogenic activity assessment and prevalence in large cfDNA cohort
por: Fairclough, Stephen R., et al.
Publicado: (2019) -
Variants of Uncertain Significance and “Missing Pathogenicity”
por: Fatkin, Diane, et al.
Publicado: (2020) -
The functional impact of variants of uncertain significance in BRCA2
por: Mesman, Romy L. S., et al.
Publicado: (2018) -
Functional characterization of 84 PALB2 variants of uncertain significance
por: Wiltshire, Timothy, et al.
Publicado: (2019)