Cargando…
Construction of E. coli—Mycobacterium shuttle vectors with a variety of expression systems and polypeptide tags for gene expression in mycobacteria
Cloning and expression of a desired gene is indispensable in molecular biology studies. Expression vectors, in this regard, should offer much needed flexibility and choice of cloning strategies for both in vivo and in vitro protein expression experiments. Furthermore, availability of option to choos...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7065818/ https://www.ncbi.nlm.nih.gov/pubmed/32160243 http://dx.doi.org/10.1371/journal.pone.0230282 |
Sumario: | Cloning and expression of a desired gene is indispensable in molecular biology studies. Expression vectors, in this regard, should offer much needed flexibility and choice of cloning strategies for both in vivo and in vitro protein expression experiments. Furthermore, availability of option to choose from various reporter tags allows one to be flexible during designing of an experiment in a more relevant manner. Thus, the need of a versatile expression system cannot be ignored. Although several different expression vectors are available for gene expression in mycobacteria, they lack the required versatility of expression and the inclusion of reporter tags. We here present the construction of a set of nine E. coli-Mycobacterium shuttle plasmids, which offer a combination of three mycobacterial promoter systems (heat shock inducible-hsp60, tetracycline-, and acetamide-inducible) along with three polypeptide tags (Green Fluorescent Protein (GFP), Glutathione S-transferase (GST) and hexa-histidine tag). These vectors offer the cloning of a target gene in all the nine given vectors in parallel, thus allowing the generation of recombinant plasmids that will express the target gene from different promoters with different tags. Here, while the hexa-histidine and GST tags can be used for protein purification and pull-down experiments, the GFP-tag can be used for protein localization within the cell. Additionally, the vectors also offer the choice of positioning of the reporter tag either at the N-terminus or at the C-terminus of the expressed protein, which is achieved by cloning of the gene at any of the two blunt-end restriction enzyme sites available in the vector. We believe that these plasmids will be extremely useful in the gene expression studies in mycobacteria by offering the choices of promoters and reporters. Our work also paves the way to developing more such plasmids with other tags and promoters that may find use in mycobacterial biology. |
---|